摘要
林可霉素和3种大环内酯类抗生素(红霉素、螺旋霉素、阿奇霉素)在医疗和畜禽养殖等多个领域应用广泛,并且能够通过制药废水、畜禽废水以及市政污泥的排放和处理等多种途径进入环境。厌氧消化是有效处理抗生素废水的常用方法。从典型废水中抗生素浓度分布和对厌氧消化代谢过程的影响角度出发,总结了厌氧消化对上述抗生素的响应特征。结果表明:林可霉素和3种大环内酯类抗生素在低浓度时促进厌氧消化产甲烷,高浓度时抑制厌氧消化产甲烷,主要通过厌氧消化产甲烷过程中挥发性脂肪酸(VFAs)的累积,以及某些挥发性脂肪酸氧化菌活性和产甲烷古菌活性的降低来抑制厌氧消化产甲烷。最后,探讨了上述抗生素厌氧生物降解的代谢途径和缓解抗生素对厌氧消化抑制的方法。
当前中国抗生素产量总体规模已达世界第一,同时也是抗生素使用大国。据统计,我国抗生素年使用量约为15~20万吨,在医疗、畜禽和水产养殖等行业中发挥了重要作
制药废水及养殖废水中有机物浓度较高,厌氧生物处理技术作为一种高效的有机废水处理工艺,近年来在抗生素制药废水处理等方面应用广
大环内酯类抗生素是一类分子结构中具有12~16个碳内酯环的抗菌药物的总称,属于广谱抗生素。通过阻断50S核糖体中肽酰转移酶的活性来抑制细菌蛋白质的合成,广泛应用于需氧革兰氏阳性菌和阴性菌、某些厌氧菌以及军团菌、支原体、衣原体等感染的治

图1 化学结构式
Fig.1 Chemical structural formulae
3种大环内酯类抗生素和林可霉素的物理及化学特性如
3种大环内酯类抗生素和林可霉素涉及的废水主要包括制药废水、养殖废水、医疗废水和市政废水。
典型废水中上述抗生素的高残留浓度也会促进环境中抗性基因的累积,导致微生物抗药性增强。研究人员在城市污水处理厂活性污泥中筛选出红霉素抗性基因ermA,但是该基因并未在进水中检
厌氧消化基质不同时,低浓度的林可霉素对厌氧消化产甲烷表现出不同的影响。10 mg·
文献调研进一步发现,厌氧微生物驯化后对上述抗生素具有适应性。中温厌氧连续流反应器,在第104~167 d连续运行的63 d期间,红霉素质量浓度从1 mg·
红霉素、阿奇霉素、螺旋霉素和林可霉素通过刺激厌氧消化过程中VFAs的生成,或者阻碍VFAs被进一步利用,从而造成厌氧消化过程中不同类型VFAs的累积。如
采用qRT‒PCR以及16S rRNA高通量测序等生物学技术协助分析抗生素胁迫条件下厌氧消化微生物菌群的变
VFAs氧化菌的活性一方面与抗生素的直接抑制作用有关,另一方面可能与甲烷菌的活性受抗生素抑制导致的乙酸和氢气的累积间接相

图2 3种大环内酯类抗生素(红霉素、螺旋霉素、阿奇霉)和林可霉素对厌氧消化影响机制的推测
Fig.2 Influencing mechanism deduction of three macrolide antibiotics (erythromycin, spiramycin, azithromycin) and lincomycin on anaerobic digestion
不同抗生素对厌氧产甲烷古菌的影响存在差异。厌氧消化过程中,林可霉素和阿奇霉素对优势属耗乙酸产甲烷古菌Methanosaeta(甲烷丝状菌)影响
林可霉素和3种大环内酯类抗生素(阿奇霉素、红霉素、螺旋霉素)的存在会影响厌氧消化微生物群。如
目前,常用的预处理技术包括热水解、超声、微波、电絮凝、碱性热预处理及不同的组合处理。大环内酯类抗生素在较低的温度和相对中性的pH条件下水解缓
通过硅钨酸水解和微波联合预处理、酸和碱催化水解等组合方法,可以移除大环内酯类抗生素(螺旋霉素)中的内酯键和糖苷键抗菌官能团或破坏其骨架结构,显著降低抗菌效
在厌氧消化池中添加外源介质,如活性炭、铁材料、锰材料等,可以稳定消化条件,丰富和多样化厌氧消化微生物群落,从而减少上述抗生素对厌氧消化的抑制,提高厌氧消化的甲烷产量。Zhang
前文探讨了抗生素的存在导致体系乙酸、丙酸、丁酸和氢气的累积,进而影响体系产甲烷。生物强化可以改变厌氧消化微生物群落结构,消减VFAs累积对厌氧消化的抑制,提高系统产甲烷,增强体系稳定性。在厌氧消化反应器中添加耐酸产甲烷菌群和丙酸盐降解菌群,可促进厌氧消化产甲烷提高9%~12%;通过增加强化微生物如甲烷杆菌属Methanobacterium、甲烷丝状菌属Methanothrix和甲烷营绳菌属Methanolinea等的相对丰度来重建产甲烷菌群,提高甲烷产
核磁共振、高效液相色谱质谱连用法可以鉴定和表征抗生素及其中间体,得出形成和消失的时间分布,从而阐明其厌氧生物代谢机
目前,关于林可霉素降解的研究热点主要集中在水解、光催化等代谢途径,包含了羟基化、氧化、甲硫基的丢失或替代、异丙基侧链不饱和还原等路
红霉素、阿奇霉素、螺旋霉素和林可霉素在环境中高浓度、高频次的检出,严重危害生态环境,利用厌氧消化工艺消减高浓度废水中的抗生素迫在眉睫。当前研究多为4种抗生素单独对厌氧消化的作用,低浓度抗生素会促进厌氧消化产甲烷,高浓度抗生素会抑制产甲烷,并且产甲烷过程的效果与厌氧消化的基质有关。关于上述抗生素对厌氧消化影响的相关研究多为批次实验或者长期运行结果,主要集中于抗生素对厌氧消化抑制效果的考察,而对厌氧消化在急性和长期实验中影响的报道不尽相同,抗生素对厌氧消化的影响有促进也有抑制作用,未来有必要进一步开展关于上述抗生素对厌氧消化系统的短期冲击负荷和长期毒性的影响研究,以明确关键因子。另一方面,制药或者养殖废水中的抗生素一般不是单独存在的,因此有必要进一步考察多种抗生素共存时的相互作用及其对不同基质厌氧消化特性的影响。
厌氧消化是处理抗生素废水的常用工艺,上述抗生素能够影响厌氧消化的VFAs氧化菌和产甲烷古菌的活性。多数情况下,4种抗生素能够抑制丙酸互营氧化菌和丁酸互营氧化菌的活性,致使其相对丰度的减少。然而,不同浓度的抗生素对于产甲烷菌的影响存在差别,低浓度时能够促进产甲烷古菌丰度的增加,高浓度时却抑制产甲烷菌活性。近年来,较多的研究通过核磁共振和串级质谱分析技术探究4种抗生素在水解、光解以及厌氧消化中的开环、厌氧羟基化、异丙基侧链不饱和还原等氧化还原反应的代谢行为,而针对在厌氧生物代谢方面的研究较少。此外,通过预处理、外加介质、生物强化等方式对受抑制的消化器进行持续、稳定的改善,能够有效提高厌氧消化效率,但是对上述抗生素存在条件下,对厌氧消化抑制的缓解效果以及机理有待进一步验证和研究。因此,未来可以借助16S rRNA高通量测序、宏基因组学、蛋白组学等技术手段进一步考察4种抗生素作用下厌氧微生物菌群的演化特征,同时结合抗生素的厌氧生物降解特性,阐明厌氧消化中抗生素的代谢机制,以实现废水中抗生素的有效消减,降低环境中抗生素的残留浓度。
作者贡献声明
谢 丽:负责论文的选题与设计,修改论文中关键性理论和其他主要内容。
张艺蝶:负责论文的选题与设计,论文的起草、撰写和最终版本的修订。
朱雯喆:参与论文的选题与设计,修改论文中关键性理论和主要内容。
何莹莹:参与论文中关键性理论和主要内容的修改。
参考文献
聂宇, 陈娅婷, 孙照勇, 等. 污水/城市污泥中抗生素对厌氧消化的影响研究进展[J]. 应用与环境生物学报, 2020, 26(2):479. [百度学术]
NIE Yu, CHEN Yating, SUN Zhaoyong, et al. Research progress on the effects of antibiotics on anaerobic digestion in sewage and municipal sludge[J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(2):479. [百度学术]
SENTA I, KOSTANJEVECKI P, KRIZMAN-MATASIC I, et al. Occurrence and behavior of macrolide antibiotics in municipal wastewater treatment: possible importance of metabolites, synthesis byproducts, and transformation products[J]. Environmental Science Technology, 2019, 53(13): 7463. [百度学术]
戈梅, 罗敏玉, 陈代杰. 细菌对MLS类和糖肽类抗生素产生耐药性的作用机制[J]. 中国新药杂志, 2005(3): 282. [百度学术]
GE Mei, LUO Minyu, CHEN Daijie. Bacterial resistance on MLS and glycopeptide antibiotics[J]. Chinese Journal of New Drugs, 2005(3):282. [百度学术]
CHEN Yun, XIE Quanmo, WAN Jinquan, et al. Occurrence and risk assessment of antibiotics in multifunctional reservoirs in Dongguan, China[J]. Environmental Science and Pollution Research, 2020, 27(12): 13565. [百度学术]
王娅南, 彭浩, 黄合田, 等. 贵阳市城市河流典型抗生素的分布特征[J]. 环境化学, 2018, 37(9): 2039. [百度学术]
WANG Yanan, PENG Hao, HUANG Hetian, et al. Distribution characteristics of typical antibiotics in urban rivers of Guiyang city[J]. Environmental Chemistry, 2018, 37(9): 2039. [百度学术]
方昊, 余军楠, 王智峰, 等. 江苏典型中华绒螯蟹养殖区抗生素污染特征与生态风险评估[J]. 生态与农村环境学报, 2019, 35(11): 1436. [百度学术]
FANG Hao, YU Junnan, WANG Zhifeng, et al. Contamination characteristics and ecological risk assessment of antibiotics in typical Eriocheir sinensis aquaculture environments of Jiangsu Province[J]. Journal of Ecology and Rural Environment, 2019, 35(11): 1436. [百度学术]
BIELEN A, ŠIMATOVIĆ A, KOSIĆ-VUKSŠIĆ J, et al. Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries[J]. Water Research, 2017, 126(1): 79. [百度学术]
MANDARIC L, DIAMANTINI E, STELLA E, et al. Contamination sources and distribution patterns of pharmaceuticals and personal care products in Alpine rivers strongly affected by tourism[J]. Science of the Total Environment, 2017, 590/591: 484. [百度学术]
覃彩霞, 佟娟, 申佩弘, 等. 螺旋霉素制药废水处理过程中耐药菌和抗性基因的转归特征[J]. 环境科学, 2015, 36(9): 3311. [百度学术]
QIN Caixia, TONG Juan, SHEN Peihong, et al. Fate of ARB and ARGs during wastewater treatment process of spiramycin production[J]. Environmental Science, 2015, 36(9): 3311. [百度学术]
CHENG D L, NGO H H, GUO W S, et al. Problematic effects of antibiotics on anaerobic treatment of swine wastewater[J]. Bioresource Technology, 2018, 263: 642. [百度学术]
AKYOL Ç , INCE O, CETECIOGLU Z, et al. The fate of oxytetracycline in two-phase and single-phase anaerobic cattle manure digesters and its effects on microbial communities[J]. Journal of Chemical Technology and Biotechnology, 2016, 91(3): 806. [百度学术]
STEIN G E, HAVLICHEK D H. The new macrolide antibiotics: azithromycin and clarithromycin[J]. Postgraduate Medicine, 1992, 92(1): 269. [百度学术]
MAROSEVIC D, KAEVSKA M, JAGLIC Z. Resistance to the tetracyclines and macrolide-lincosamide-streptogramin group of antibiotics and its genetic linkage: a review[J]. Annals of Agricultural and Environmental Medicine, 2017, 24(2): 338. [百度学术]
ROCCO L, PELUSO C, STINGO V. Micronucleus test and comet assay for the evaluation of zebrafish genomic damage induced by erythromycin and lincomycin[J]. Environmental Toxicology, 2012, 27(10): 598. [百度学术]
周佳虹. 天津市城镇污水处理厂污泥中典型抗生素的分布迁移[D]. 天津: 天津大学, 2017. [百度学术]
ZHOU Jiahong. Distribution and migration of typical antibiotics in sewage sludge of municipal wastewater treatment plants in Tianjin[D]. Tianjin: Tianjin University, 2017. [百度学术]
王振. 剩余污泥中典型PPCPs赋存特性研究[D]. 北京: 北京建筑大学, 2017. [百度学术]
WANG Zhen. Study on occurrence characteristics of typical PPCPs in excess sludge[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2017. [百度学术]
ZUCCATO E, CASTIGLIONI S, BAGNATI R, et al. Source, occurrence and fate of antibiotics in the Italian aquatic environment[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 1042. [百度学术]
XU Weihai, ZHANG Gan, LI Xiangdong, et al. Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China[J]. Water Research, 2007, 41(19): 4526. [百度学术]
BENGTSSON-PALME J, MILAKOVIC M, SVECOVA H, et al. Industrial wastewater treatment plant enriches antibiotic resistance genes and alters the structure of microbial communities[J]. Water Research, 2019, 162: 437. [百度学术]
魏晓东, 刘叶新, 周志洪, 等. 广州典型排放源废水中抗生素的污染特征和去除效果[J]. 华南师范大学学报:自然科学版, 2018, 50(1): 11. [百度学术]
WEI Xiaodong, LIU Yexin, ZHOU Zhihong, et al. Occurrence and removal of antibiotics from wastewater of typical emission sources in Guangzhou,China[J]. Journal of South China Normal University: Natural Science Edition, 2018, 50(1): 11. [百度学术]
SIM W, LEE J, LEE E, et al. Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures[J]. Chemosphere, 2011, 82(2): 179. [百度学术]
ZUCCATO E, CASTIGLIONI S, FANELLI R. Identification of the pharmaceuticals for human use contaminating the Italian aquatic environment[J]. Journal of Hazardous Materials, 2005, 122(3): 205. [百度学术]
LOFRANO G, LIBRALATO G, Casaburi A, et al. Municipal wastewater spiramycin removal by conventional treatments and heterogeneous photocatalysis[J]. Science of the Total Environment, 2018, 624: 461. [百度学术]
LIU Pengyu, SHAO Lei, YAO Jian, et al. Pilot scale treatment of spiramycin fermentation wastewater in four-stage anaerobic system(FSAS)[J]. Chinese Journal of Pharmaceuticals, 2018, 49(2): 156. [百度学术]
庄榆佳, 高阳俊, 邓玉君, 等. 微生物固化曝气技术对养殖废水的深度处理[J]. 环境化学, 2015, 34(7): 1356. [百度学术]
ZHUANG Yujia, GAO Yangjun, DENG Yujun, et al. Advanced treatment of swine wastewater by the immobilized-microorganism and aeration technology[J]. Environmental Chemistry, 2015, 34(7): 1356. [百度学术]
郝彤遥, 罗晓, 赵彦, 等. 石墨烯负载TiO2光催化降解阿奇霉素废水[J]. 工业水处理, 2019, 39(3): 92. [百度学术]
HAO Tongyao, LUO Xiao, ZHAO Yan, et al. Photocatalytic degradation of azithromycin wastewater by means of graphene-loaded titanium dioxide[J]. Industrial Water Treatment, 2019, 39(3): 92. [百度学术]
任省涛, 郭夏丽, 芦阿虔, 等. 林可霉素菌渣堆肥抗生素抗性基因变化分析[J]. 中国环境科学, 2018, 38(11): 278. [百度学术]
REN Shengtao, GUO Xiali, LU Aqian, et al. Variations of antibiotic resistance genes during lincomycin mycelia dreg composting[J]. China Environmental Science, 2018, 38(11): 278. [百度学术]
杨军, 陆正禹, 胡纪萃, 等. 林可霉素生产废水的厌氧生物处理工艺[J]. 环境科学, 2001, 22(2): 827. [百度学术]
YANG Jun, LU Zhengyu, HU Jicui, et al. Anaerobic biological treatment of lincomycin production wastewater[J]. Environmental Science, 2001, 22(2): 82. [百度学术]
FAN Caian, HE Jianzhong. Proliferation of antibiotic resistance genes in microbial consortia of sequencing batch reactors (SBRs) upon exposure to trace erythromycin or erythromycin-H2O[J]. Water Research, 2011, 45(10): 3098. [百度学术]
LECLERCQ R, OBERLÉ K, GALOPIN S, et al. Changes in enterococcal populations and related antibiotic resistance along a medical center-wastewater treatment plant-river continuum[J]. Applied and Environmental Microbiology, 2013, 79(7): 2428. [百度学术]
HUANG Jingjing, HU Hongying, LU Sunqin, et al. Monitoring and evaluation of antibiotic-resistant bacteria at a municipal wastewater treatment plant in China[J]. Environmental International, 2012, 42: 31. [百度学术]
GARTISER S, URICH E, ALEXY R, et al. Anaerobic inhibition and biodegradation of antibiotics in ISO test schemes[J]. Chemosphere, 2007, 66(10): 1839. [百度学术]
AMIN M M, ZILLES J L, GREINER J, et al. Influence of the antibiotic erythromycin on anaerobic treatment of a pharmaceutical wastewater[J]. Environmental Science & Technology, 2006, 40(12): 3971. [百度学术]
刘子旭, 孙力平, 李玉友, 等. 红霉素对产甲烷菌的抑制及其驯化[J]. 环境科学, 2013, 34(4): 1540. [百度学术]
LIU Zixu, SUN Liping, LI Yuyou, et al. Inhibition of methanogenium of erythromycin and its domestation[J]. Environmental Science, 2013, 34(4): 1540. [百度学术]
CETECIOGLU Z, INCE B, ORHON D, et al. Acute inhibitory impact of antimicrobials on acetoclastic methanogenic activity[J]. Bioresource Technology, 2012, 114: 109. [百度学术]
CETECIOGLU Z, INCE B, INCE O, et al. Acute effect of erythromycin on metabolic transformations of volatile fatty acid mixture under anaerobic conditions[J]. Chemosphere, 2015, 124: 129. [百度学术]
马清佳, 田哲, 员建, 等. 9种抗生素对污泥高温厌氧消化的急性抑制[J]. 环境工程学报, 2018, 12(7): 2084. [百度学术]
MA Qingjia, TIAN Zhe, YUAN Jian, et al. Acute inhibition of nine antibiotics on sludge thermophilic anaerobic digestion[J]. Chinese Journal of Environmental Engineering, 2018, 12(7): 2084. [百度学术]
MUSTAPHA N A, HU A, YU C-P, et al. Seeking key microorganisms for enhancing methane production in anaerobic digestion of waste sewage sludge[J]. Applied Microbiology and Biotechnology, 2018, 102(12): 5323. [百度学术]
MUSTAPHA N A, SAKAI K, SHIRAI Y, et al. Impact of different antibiotics on methane production using waste-activated sludge: mechanisms and microbial community dynamics[J]. Applied Microbiology and Biotechnology, 2016, 100(21): 9355. [百度学术]
NGUYEN M T, MAEDA T, MOHD YUSOFF M Z, et al. Effect of azithromycin on enhancement of methane production from waste activated sludge[J]. Journal of Industrial Microbiology & Biotechnology, 2014, 41(7): 1051. [百度学术]
何品晶, 管冬兴, 吴铎, 等. 氨氮和林可霉素对有机物厌氧消化的抑制效应[J]. 化工学报, 2011, 62(5): 1389. [百度学术]
HE Pinjing, GUAN Dongxing, WU Duo, et al. Inhibitory effect of ammonia and lincomycin on anaerobic digestion[J]. Journal of Chemical Industry and Engineering, 2011, 62(5): 1389. [百度学术]
LU X, ZHEN G, LIU Y, et al. Long-term effect of the antibiotic cefalexin on methane production during waste activated sludge anaerobic digestion[J]. Bioresource Technology, 2014, 169: 644. [百度学术]
王冰. 林可霉素高浓度有机废水处理技术[J]. 水资源保护, 2008, 24(4): 52. [百度学术]
WANG Bing. Treatment of organic wastewater with a high-concentration of lincomycin[J]. Water Resouurces Protection, 2008,24(4): 52. [百度学术]
谢钟林, 赵明星, 阮文权, 等. 林可霉素对厌氧消化过程抑制及有机酸积累影响研究[J]. 上海环境科学, 2012, 31(6): 251. [百度学术]
XIE Zhonglin, ZHAO Mingxing, RUAN Wenquan, et al. A study on influences of lincomycin on the inhibition of anaerobic digestion processes and the accumulation of organic acid[J]. Shanghai Environmental Science, 2012, 31(6): 251. [百度学术]
ATASOY M, EYICE O, CETECIOGLU Z. A comprehensive study of volatile fatty acids production from batch reactor to anaerobic sequencing batch reactor by using cheese processing wastewater[J]. Bioresource Technology, 2020, 311: 123. [百度学术]
NIU Q, KUBOTA K, QIAO W, et al. Effect of ammonia inhibition on microbial community dynamic and process functional resilience in mesophilic methane fermentation of chicken manure[J]. Journal of Chemical Technology and Biotechnology, 2015, 90(12): 2161. [百度学术]
LIU Pengyu, CHEN Jiarong, SHAO Lei, et al. Responses of flocculent and granular sludge in anaerobic sequencing batch reactors (ASBRs) to azithromycin wastewater and its impact on microbial communities[J]. Journal of Chemical Technology and Biotechnology, 2018, 93(8): 2341. [百度学术]
AYDIN S, CETECIOGLU Z, ARIKAN O, et al. Inhibitory effects of antibiotic combinations on syntrophic bacteria, homoacetogens and methanogens[J]. Chemosphere, 2015, 120: 515. [百度学术]
董焕成, 买文宁, 李海松, 等. 盐酸林可霉素菌渣的厌氧处理可行性静态实验研究[J]. 环境工程学报, 2016, 10(4): 1993. [百度学术]
DONG Huancheng, MAI Wenning , LI Haisong, et al. Study on feasibility static experiment under anaerobic treatment for lincomycin biowaste[J]. Chinese Journal of Environmental Engineering, 2016, 10(4): 1993. [百度学术]
郑佳伦, 刘超翔, 刘琳, 等. 禽畜养殖业主要废弃物处理工艺消除抗生素研究进展[J]. 环境化学, 2017, 36(1): 37. [百度学术]
ZHENG Jialun, LIU Chaoxiang, LIU Lin, et al. Removal of antibiotics in waste and wastewater treatment facilities of animal breeding industry: a review[J]. Environmental Chemistry, 2017, 36(1): 37. [百度学术]
MITCHELL S M, ULLMAN J L, TEEL A L, et al. Hydrolysis of amphenicol and macrolide antibiotics: chloramphenicol, florfenicol, spiramycin, and tylosin[J]. Chemosphere, 2015, 134: 504. [百度学术]
TANG Mei, GU Yong, WEI Dongbin, et al. Enhanced hydrolysis of fermentative antibiotics in production wastewater: hydrolysis potential prediction and engineering application[J]. Chemical Engineering Journal, 2020, 391:123626. [百度学术]
ZHANG Xiangyu, LI Ruying. Variation of antibiotics in sludge pretreatment and anaerobic digestion processes: degradation and solid-liquid distribution[J]. Bioresource Technology, 2018, 255: 266. [百度学术]
高雪, 吕建波, 苏润西, 等. 电絮凝法去除水中四环素的效能及机理[J]. 环境工程学报, 2019, 13(4): 826. [百度学术]
GAO Xue, LÜ Jianbo, SU Runxi, et al. Performance and mechanism of electrocoagulation process for tetracycline removal from water[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 826. [百度学术]
金磊, 胡涛. 水源水中微量抗生素的去除工艺[J]. 净水技术, 2018, 37(增2): 24. [百度学术]
JIN Lei, HU Tao. Removal process of trace level antibiotics from raw water[J]. Water Purification Technology, 2018,37(Z2):24. [百度学术]
CHEN Zheng, DOU Xiaomin, ZHANG Yu, et al. Rapid thermal-acid hydrolysis of spiramycin by silicotungstic acid under microwave irradiation[J]. Environmental Pollution, 2019, 249: 36. [百度学术]
ZHANG J, MAO F, LOH K C, et al. Evaluating the effects of activated carbon on methane generation and the fate of antibiotic resistant genes and class I integrons during anaerobic digestion of solid organic wastes[J]. Bioresource Technology, 2018, 249: 729. [百度学术]
YING Jiaolong, QIN Xiaopeng, ZHANG Zhanhao, et al. Removal of lincomycin from aqueous solution by birnessite: kinetics, mechanism, and effect of common ions[J/OL]. Environmental Science and Pollution Research, 2020. [2020-10-06]. http://apps.webofknowledge.com/full_record.do [百度学术]
?product=UA&search_mode=GeneralSearch&qid=1&SID=7EnDgYyHLCfojABa6ZF&page=1&doc=1&excludeEventConfig=ExcludeIfReload. [百度学术]
EL MAATAOUI Y, EL M’RABET M, MAAROUFI A, et al. Spiramycin adsorption behavior on activated bentonite, activated carbon and natural phosphate in aqueous solution[J]. Environmental Science Pollution Research, 2019, 26: 15953. [百度学术]
程佳琦. 外源介体强化四环素废水厌氧消化过程与效能研究[D]. 哈尔滨:哈尔滨工业大学, 2016. [百度学术]
CHENG Jiaqi. Research on the enhanced process and performance during anaerobic digestion of tetracycline wastewater by redox mediator[D]. Harbin :Harbin Institute of Technology, 2016. [百度学术]
VENKITESHWARAN K, MILFERSTEDT K, HAMELIN J, et al. Anaerobic digester bioaugmentation influences quasi steady state performance and microbial community[J]. Water Research, 2016, 104: 128. [百度学术]
LI Ying, YANG Gaixiu, LI Lianhua, et al. Bioaugmentation for overloaded anaerobic digestion recovery with acid-tolerant methanogenic enrichment[J]. Waste Management, 2018, 79: 744. [百度学术]
邵享文, 黄心昊, 陈尧, 等. 丁酸驯化及氢胁迫对厌氧污泥菌群及生物强化的影响[J]. 中国给水排水, 2019,35(19): 12. [百度学术]
SHAO Xiangwen, HUANG Xinhao, CHEN Yao, et al. Effects of butyric acid tolerant acclimation and hydrogen stress on microbial community structure and biological enhancement of anaerobic sludge[J]. China Water & Wastewater, 2019,35(19): 12. [百度学术]
ZHANG Jingxin, CHUA Qingwei, MAO Feijian, et al. Effects of activated carbon on anaerobic digestion: methanogenic metabolism, mechanisms of antibiotics and antibiotic resistance genes removal[J]. Bioresource Technology Reports, 2019, 5: 113. [百度学术]
YAO Jian, SHAO Lei, CHEN Daijie,et al. Anaerobic biodegradation of spiramycin I and characterization of its new metabolites[J]. Bioscience, Biotechnology, and Biochemistry, 2017, 81(5): 1051. [百度学术]
ZHU Pei, CHEN Daijie, LIU Wenbin, et al. Hydroxylation and hydrolysis: two main metabolic ways of spiramycin I in anaerobic digestion[J]. Bioresource Technology, 2014, 153: 95. [百度学术]
CALZA P, MEDANA C, PADOVANO E, et al. Identification of the unknown transformation products derived from lincomycin using LC-HRMS technique[J]. Journal of Mass Spectrometry, 2012, 47(6): 751. [百度学术]
ACHARD A, VILLERS C, PICHEREAU V, et al. New lnu(C) gene conferring resistance to lincomycin by nucleotidylation in Streptococcus agalactiae UCN36[J]. Antimicrobial Agents and Chemotherapy, 2005, 49(7): 2716. [百度学术]
WANG Mengmeng, CAI Chen, ZHANG Bo, et al. Characterization and mechanism analysis of lincomycin biodegradation with Clostridium sp. strain LCM-B isolated from lincomycin mycelial residue (LMR)[J]. Chemosphere, 2018, 193: 611. [百度学术]