摘要
为了研究渤中19-6凝析气藏的成因类型,利用同位素、轻烃参数、金刚烷参数等方法,系统分析渤中19-6凝析气藏,深入研究其形成机理,认为:渤中19-6气田天然气干燥系数较低,碳同位素偏重,成熟度分布在1.50 %左右,综合判断属于偏腐殖型高熟气;渤中19-6气田凝析油双金刚烷含量较高,生物标志化合物含量较低,指示渤中19-6气田凝析油为高成熟原油,且计算原油裂解程度低于20 %,对天然气的贡献量有限,渤中19-6气田天然气主要为干酪根裂解形成。
渤海湾盆地是中国东部重要含油气盆地,经历半个多世纪的勘探,主要以产油为主,已探明原油储量远远大于已探明天然气储量;截至2017年底,渤海湾盆地发现的最大气田为千米桥凝析气田,探明天然气地质储量305×1
中国海洋石油集团有限公司通过长期的攻关研究,向深层挺进,于2018年发现了探明储量超千亿方的整装凝析气田-渤中19-6凝析气
对于油型盆地天然气藏的成因机理,普遍认为富含Ⅰ、Ⅱ型干酪根的油型盆地中天然气主要以原油裂解气和滞留烃裂解气为主,两者呈接力生烃的方式持续生
前人利用天然气组分和碳同位素等地球化学数据对渤中19-6气田天然气的成因进行了一定的研究,但是在判识天然气成因方面产生了诸多矛盾,主要存在以下问题:①从天然气的碳同位素特征上看,根据戴金
渤中凹陷位于渤海湾盆地中东部,面积近1×1

图1 渤中19-6凝析气田区域位置
Fig. 1 Location of Bozhong 19-6 gas condensate field
渤中凹陷潜山地层在纵、横向上分布变化较大,由北部的中生界、下古生界和太古界3 套地层逐渐过渡到南部的太古界,上覆新生界厚度可达4 500 m,发育古近系孔店组、沙河街组和东营组,新近系馆陶组和明化镇组,以及第四系。渤中19-6 气田主力气层为太古界变质花岗岩和上覆孔店组砂砾岩共同构成的深层泛潜山储
本文对渤中19-6气田4个天然气样品进行同位素、组分、轻烃等分析的基础上(
轻烃实验是在Agilent 7890GC气相色谱仪进行,采用30 m×0.25 mm的弹性石英毛细柱DB-5 进行分析。起始温度30 ℃,柱温80 ℃~310 ℃,升温速率为6 ℃·mi
金刚烷双质谱分析在Agilent 7890GC气相色谱仪进行;载气: 99.999 %氦气;进样口:300 ℃;传输线:300 ℃;色谱柱: HP-5MS弹性石英毛细柱(60 m×0.25 mm×0.25 m);柱温:初温50 ℃保持5 min; 15 ℃·mi
渤中19-6气田属于特高含凝析油凝析气藏,气油比951.00~1 500.00
渤中19-6气田天然气样品分析表明,天然气甲烷含量在70.00 %~78.50 %之间,CO2含量在6.90 %~16.30 %之间,N2含量在0.12 %~0.32 %之间,干燥系数0.84~0.86之间,属于典型的“中等-高含二氧化碳”湿气。从天然气同位素分布来看,甲烷同位素(
戴金

图2 渤中19-6天然气碳同位素成因鉴别图
Fig. 2 Carbon isotope genetic identification of Bozhong 19-6 gas field
赵孟军
天然气轻烃参数蕴含大量的母源、环境及成熟度等相关信息,目前应用广泛的主要为C5-7类相关化合物。胡惕麟
通过对渤中19-6天然气样品分析,发现样品的IMCH分布在30.60 %~32.43 %之间,按照甲基环己烷指数( IMCH) 辨识标准,可以排除煤成气的可能。
天然气中脂肪族组成受不同沉积环境、不同母质类型源岩的影响。常用C5-C7正构烷烃、异构烷烃和环烷烃的相对含量来鉴别不同成因的天然气,在C5-7三角图中可以看出,渤中19-6天然气分布在腐泥型气和腐殖型气的交界线附近,表明渤中19-6天然气可能不是典型的腐泥型天然气或者腐殖型天然气(

图3 渤中19-6天然气轻烃系统三角图
Fig. 3 Light hydrocarbon system triangle chart of Bozhong 19-6 gas field
Ten Have

图4 渤中19-6气田天然气w(P2 + N2)/w(T)与w(P3) /w(T)和w(N2/ w(P3)与w(P2)/w(T)交会图
Fig. 4 Cross plots of w(P2 + N2)/w(T) versus w(P3) /w(T)and w(N2/ w(P3) versus w(P2)/w(T) of piedmont zone of Bozhong 19-6 gas field
Behar

图5 渤中19-6偏腐殖型天然气成熟度识别图
Fig. 5 Partial humus type gas maturity identification of Bozhong 19-6 gas field
部分轻烃参数对温度的敏感性较高,和有机质成熟度具有良好的相关性,目前常用庚烷值、异庚烷值的分布区间来划分天然气成熟度范
渤中19-6气田未发现之前,渤海湾盆地最大的凝析气田为千米桥潜山气田,对于千米桥和板桥气田天然气成因,前人做过大量的研

图6 天然气
Fig. 6
Dahl
张水昌

图7 原油裂解程度与金刚烷含量相关关系图
Fig. 7 Oil cracking degree versus amantadane content
王勇刚
Dahl

图8 原油实际裂解程度与金刚烷计算的裂解程度对应图
Fig. 8 Extent of cracking versus methyldiamantane concentration in laboratory oil-cracking experiments
对于原油裂解度,前人也利用气油比(GOR)计算原油转化
前人对渤中19-6构造带进行埋藏热史恢

图9 渤中19-6构造带热演化
Fig. 9 Geothermal evolution history of Bozhong 19-6 structure
综合分析表明渤中19-6气田凝析油裂解程度在20 %左右,裂解度较低,属于原油开始裂解的初始阶段,对天然气的贡献量有限。
因此,结合
渤中19-6气田天然气为“中等-高含二氧化碳”湿气,气油比普遍高于1 000.00
作者贡献声明
李威:单独提出本文观点,独立完成文章的构造、结构,独立完成文章撰写、独立创作完成相关专业图件的绘制。
参考文献
徐长贵,于海波,王军,等. 渤海海域渤中19-6气田形成条件与成藏特征[J].石油勘探与开发, 2019,46(1):1. [百度学术]
XU Changgui, YU Haibo, WANG Jun, et al. Formation conditions and accumulation characteristics of Bozhong 19-6 large condensate gas field in offshore Bohai Bay Basin[J]. Petroleum Exploration and Development, 2019, 46(1):1. [百度学术]
薛永安,李慧勇.渤海海域深层太古界变质岩潜山大型凝析气田的发现及其地质意义[J].中国海上油气,2018,30(3):1. [百度学术]
XUE Yongan, LI Huiyong. Large condensate gas field in deep Archean metamorphic buried hill in Bohai sea: discovery and geological significance[J]. China offshore Oil and Gas, 2018, 30(3):1. [百度学术]
施和生,王清斌,王军,等. 渤中凹陷深层渤中19-6 构造大型凝析气田的发现及勘探意义[J].中国石油勘探,2019,24(1):36. [百度学术]
SHI Hesheng, WANG Qingbin, WANG Jun, et al. Discovery and exploration significance of large condensate gas fields in BZ19-6 structure in deep Bozhong sag[J]. China Petroleum Exploration, 2019, 24(1):36. [百度学术]
赵文智,王兆云,王红军,等. 再论有机质接力成气的内涵与意义[J].石油勘探与开发,2011,38(2):29. [百度学术]
ZHAO Wenzhi, WANG Zhaoyun, WANG Hongjun, et al. Further discussion on the connotation and significance of the natural gas relaying generation model from organic materials[J]. Petroleum Exploration and Development, 2011, 38(2):29. [百度学术]
李剑,马卫,王义凤,等. 腐泥型烃源岩生排烃模拟实验与全过程生烃演化模式[J].石油勘探与开发,2018,45(3):445. [百度学术]
LI Jian, MA Wei, WANG Yifeng, et al. Modeling of the whole hydrocarbon-generating process of sapropelic source rock[J]. Petroleum Exploration and Development, 2018,45(3):445. [百度学术]
戴金星.各类烷烃气的鉴别[J].中国科学,1992, 22(2): 185. [百度学术]
DAI Jinxing. Identification of various alkane gases[J]. Science China Earth Sciences, 1992, 22(2): 185. [百度学术]
谢增业,李志生,魏国齐,等. 腐泥型干酪根热降解成气潜力及裂解气判识的实验研究[J].天然气地球科学,2016,27(6):1057. [百度学术]
XIE Zengye, LI Zhisheng,WEI Guoqi, et al. Expermental research on the potential of sapropelic kerogen cracking gas and discrimination of oil cracking gas[J]. Natural Gas Geoscience, 2016, 27(6):1057. [百度学术]
侯明才,曹海洋,李慧勇,等. 渤海海域渤中19-6构造带深层潜山储层特征及其控制因素[J].天然气工业,2019,39(1):33. [百度学术]
HOU Mingcai, CAO Haiyang, LI Huiyong, et al. Characteristics and controlling factors of deep buried-hill reservoirs in the BZ19-6 structural belt, Bohai Sea area[J]. Natural Gas Industry, 2019, 39(1):33. [百度学术]
胡安文,牛成民,王德英,等. 渤海湾盆地渤中凹陷渤中19-6构造凝析油气特征与形成机制[J].石油学报,2020,41(4):403. [百度学术]
HU Anwen, NIU Chengmin, WANG Deying, et al. The Characteristics and formation mechanism of condensate oil and gas in Bozhong 19-6 structure, Bozhong sag, Bohai Bay Basin[J]. Acta Petrolei Sinica, 2020, 41(4): 403. [百度学术]
戴金星,吴小奇,倪云燕,等. 准噶尔盆地南缘泥火山天然气的地球化学特征[J].中国科学:地球科学,2012,42(2):178. [百度学术]
DAI Jinxing, WU Xiaoqi, NI Yunyan, et al. Geochemical characteristics of natural gas from mud volcanoes in the southern Junggar Basin[J]. Science China Earth Sciences, 2012, 42(2):178. [百度学术]
黄汝昌,李景明,谢增业,等. 中国凝析气藏的形成与分布[J]. 石油与天然气地质,1996,17(3):237. [百度学术]
HUANG RUchuang, LI Jingming, XIE Zengye, et al. Formation and distribution of condensate gas pools in China[J]. Oil and Gas Geology, 1996, 17(3):237. [百度学术]
赵孟军,卢双舫,李剑. 库车油气系统天然气地球化学特征及气源探讨[J].石油勘探与开发,2002,29(6):4. [百度学术]
ZHAO Mengjun, LU Shuangfang, LI Jian. The geochemical features of natural gas in Kuqa depression and the discussion on the gas source[J]. Petroleum Exploration and Development, 2002, 29(6):4. [百度学术]
胡惕麟,戈葆雄,张义纲,等.源岩吸附烃和天然气轻烃指纹参数的开发和应用[J].石油实验地质,1990,12(4):375. [百度学术]
HU Tilin, GE Baoxiong, ZHANG Yigang, et al. The development and application of fingerprint parameters for hydrocarbons absorbed by source rocks and light hydrocarbons in natural gas[J]. Experimental Petroleum Geology, 1990, 12(4): 375. [百度学术]
TEN HAVEN H L. Applications and limitations of Mango’s light hydrocarbon parameters in petroleum correlation studies[J].Organic Geochemistry, 1996, 24(10):957. [百度学术]
BEHAR F, KRESSMAN S, RUDKIEWICZ J L, et al. Experimental simulation in a confined system and kinetic modeling of kerogen and oil cracking[J]. Advances in Organic Geochemistry, 1992, 19:173. [百度学术]
THOMPSON K F M.Classification and thermal history of petroleum based on light hydrocarbons[J].Geochimica et Cosmochimica Acta, 1983, 47: 303. [百度学术]
CANIPA-MORALES N K,GALAN-VIDAL C A,Guzman-Vega M A, et al. Effect of evaporation on C7 light hydrocarbon parameters[J].Organic Geochemistry, 2003, 34:813. [百度学术]
杨池银. 板桥凹陷深层天然气气源对比与成因分析[J].天然气地球科学,2003,14(1):47. [百度学术]
YANG Chiyin. Nature gas source correlation and its genesis analysis for the deep gas pool in Banqiao sag[J]. Natural Gas Geoscience, 2003, 14(1):47. [百度学术]
黄海平,孙喜爱,张刚,等.板桥凝析气形成和聚集的地球化学特征[J]. 天然气地球科学,1993,4:21. [百度学术]
HUANG Haiping, SUN Xiai, ZHANG Gang, et al. Geochemical characteristics of formation and accumulation of banqiao condensate gas[J]. Natural Gas Geoscience, 1993, 4:21. [百度学术]
DAHL J E, MOLDOWAN J M, PETERS K, et al. Diamondoid hydrocarbons as indicators of oil cracking[J]. Nature, 1999, 399:54. [百度学术]
马安来.金刚烷类化合物在有机地球化学中的应用进展[J]. 天然气地球科学,2016,27(5):851. [百度学术]
MA Anlai. New advabcement in application of diamondoids on organic geochemisty[J]. Natural Gas Geoscience, 2016, 27(5):851. [百度学术]
WEI Zhibin, MOLDOWAN J M, PAYTAN A. Diamondoids and molecular biomarkers generated from modern sediments in the absence and presence of minerals during hydrous pyrolysis[J].Organic Geochemistry, 2006, 37(8):891. [百度学术]
张水昌,赵文智,王飞宇,等.塔里木盆地东部地区古生界原油裂解气成藏历史分析——以英南2气藏为例[J]. 天然气地球科学,2004, 15(5):441. [百度学术]
ZHANG Shuichang, ZHAO Wenzhi, WANG Feiyu, et al. Paleozoic oil cracking gas accumulation history from eastern part of the tarim basin—a case study of the YN2 gas reservoir[J]. Natural Gas Geoscience, 2004, 15(5):441. [百度学术]
赵贤正,金凤鸣,米敬奎,等. 牛东油气田原油中金刚烷和轻烃特征及其对油气成因的指示意义[J]. 天然气地球科学,2014,25(9):1395. [百度学术]
ZHAO Xianzheng, JIN Fengming, MI Jingkui, et al. Characteristics of diamondoids and light hydrocarbons from Niudong field and implication for oil/gas origin[J]. Natural Gas Geoscience, 2014, 25(9):1395. [百度学术]
王勇刚,田彦宽,詹兆文,等.东海盆地西湖凹陷原油中金刚烷类化合物特征及意义[J]. 天然气地球科学,2019,30(4):582. [百度学术]
WANG Yonggang, TIAN Yankuan, ZHAN Zhaowen, et al. Characteristics and implications of diamondoids in crude oils from the Xihu depression, East sea basin, China[J]. Natural Gas Geoscience, 2019, 30(4):582. [百度学术]
国建英,于学敏,李剑,等.歧口凹陷歧深1井气源综合对比[J] . 天然气地球科学,2009,20(3):392. [百度学术]
GUO Jianying, YU Xuemin, LI Jian, et al. Gas source of Qishen 1 well in Qikou Sag[J]. Natural Gas Geoscience, 2009, 20(3): 392. [百度学术]
CLAYPOOL G M, MANCINI E A. Geochemical relationships of petroleum in Mesozoic reservoirs to carbonate source rocks of Jurassic Smackover Formation, Southwestern Alabama[J]. AAPG Bulletin, 1989, 73(7):904. [百度学术]
马安来,金之钧,朱翠山. 塔里木盆地塔河油田奥陶系原油成熟度及裂解程度研究[J]. 天然气地球科学,2017,28(2):313. [百度学术]
MA Anlai, JIN Zhijun, ZHU Cuishan. Maturity and oil-cracking of the Ordovician oils from Tahe oilfield, Tarim basin, NW China[J]. Natural Gas Geoscience, 2017, 28(2):313. [百度学术]
HUNT J M. Petroleum geochemistry and geology[M]. 2nd ed. New York: W H Freeman and Company, 1996. [百度学术]