摘要
采用修正的初衬渗透系数表征复合式衬砌的渗透特性。建立了复合式衬砌渗流模型,推导了复合式衬砌的渗透系数计算公式,并分别采用模型退化方法和数值法对提出的公式进行了验证。结果表明:当围岩渗透系数为1×1
当前的富水岩石隧道大多采用设有防排水系统的复合式衬
复合式衬砌包含初衬和二衬2层衬砌,地下水通过两者之间的排水系统进入隧
通过隧道复合式衬砌渗流模型的建立,推导了复合式衬砌的渗透系数计算公式,该公式通过对复合式衬砌中初衬渗透系数的修正来考虑防排水系统中的土工布、防水板、环向排水管因素。对推导的公式分别采用数值法和模型退化方法进行了验证,并对修正的初衬渗透系数进行了应用计算和影响规律分析。
复合式衬砌渗流模型包含初衬、土工布、排水系统、防水板和二衬,如

图1 复合式衬砌渗流模型
Fig.1 Seepage model of composite lining
在复合式衬砌渗流模型中,地下水渗流路径从围岩开始,经初衬、土工布再到环向排水管,该阶段的地下水渗流满足达西定律和质量守恒定律。进入环向排水管的地下水经纵向、横向排水管汇流排入隧道边沟或中心管,由于该阶段的水流非达西流,因此复合式衬砌模型的渗流过程只需考虑排水系统的环向排水管。模型中渗入衬砌的所有地下水最后全部由环向排水管排出而忽略裂缝渗漏的影响,环向排水管作为最终集水设施,不存在局部将部分水排出的情况,因此对于模型中的任意局部单元,流入量都等于流出量。相比于已有模型,本模型完全考虑了复合式衬砌中的土工布、环向排水管和防水板因素。
对本模型作如下假定:
(1) 地下水服从质量守恒定律,即由围岩进入初衬、土工布再到环向排水管的渗流量都相等,并且进入隧道的涌水全部经由环向排水管排出,忽略衬砌裂缝、接缝的漏水影响(流入初衬的地下水全部经环向排水管流出,不考虑缝隙漏水,即在初衬和土工布介质中流入量等于流出量,满足Laplace方
(2) 隧道围岩与衬砌均质连续、各向同性,地下水从围岩径向均匀透过初衬(当隧道埋深较大且地下水位较高时,隧道拱顶处与仰拱处的水头差异很小(地下水位越高,差异越小),此时认为两者水头相等,那么整个隧道圈外侧的水头相等,因此地下水均匀径向透过初

图2 复合式衬砌中的渗流
Fig.2 Seepage details in composite lining
(3) 土工布中的地下水均匀渗入环向排水管。在土工布中,从2条环向排水管中间位置到其中一条环向排水管处的水头压力服从线性分布,并且环向排水管内的水压为零(隧道排水管最终与大气相通,因此排水管内水压为
如
(1) |
式中:h为渗流场中的全水头,等于位置水头与压力水头之和;r为隧道半径;θ为极坐标角度。
当隧道埋深较大且地下水位较高时,隧道拱顶处与仰拱处的水头差异很小,可认为两者水头相等,那么整个隧道圈外侧的水头相等,则地下水均匀径向透过初
(2) |
由
(3) |
根据渗流模型(见
在复合式衬砌的初衬中,渗流路径如
(4) |
式中:为水力梯度; A为每延米初衬渗流环的面积,A=2πr。
根据模型假定(2)和(3),从环向排水管到2条环向排水管中间处的水头服从线性分布。设2条环向排水管中间处的水头为hz,那么当时,加载在防水板上的水头
(5) |
取一段轴向长度为dz、环向长度为dθ 的初衬微元,则透过该微元进入土工布的渗流量
(6) |
对
(7) |
对于未考虑复合式衬砌的排水系统,以往简化为单层衬砌的渗流模

图3 未考虑排水系统的单层衬砌渗流模型
Fig.3 Single-layer lining seepage model without considering drainage system
根据前
(11) |
(12) |
(13) |
式中:为初衬渗透系数的修正系数。
以下将从模型退化方法和数值法2个方面,对复合式衬砌的渗透系数计算
相比于现有复合式衬砌渗透特性研究,本修正公式考虑了环向排水管、土工布和防水板因素,因此采用模型退化方
当环向排水管间距L1趋于无限大时,相当于隧道复合式衬砌没有设置环向排水管,渗透系数计算
(14) |
当环向排水管间距L1无限趋近于零时,
(15) |

图4 模型退化的修正系数与初衬厚度关系
Fig.4 Relationship between reduced correction coefficient and initial lining thickness
由
当土工布渗透系数kz无限大时,
(16) |
采用FLAC3D软件分别计算2种衬砌工况下涌水量和外水压力:即采用
复合式衬砌渗流模型考虑完整的防排水系统,包含围岩、初衬、排水管、土工布、防水板和二衬。衬砌修正渗流模型包含围岩和初衬,并采用

图5 数值模型(单位:mm)
Fig.5 Numerical model(unit:mm)
2个模型的边界条件如下:底部水力边界均为不透水边界,顶面边界透水并施加恒定的静水压,水位线以下围岩介质始终保持饱和;左、右两侧水力边界为透水且孔隙水压力为恒定的线性分布;前、后水力边界均为不透水边界。2个模型的边界条件不同之处在于:复合式衬砌渗流模型的防水板和二衬为不透水边界,并且环向排水管处的水压力恒定为零,而衬砌修正渗流模型的衬砌为透水边界,并且衬砌内侧的水压力恒定为零。
水头H 100 m、150 m、200 m、250 m和300 m分别对应工况1、工况2、工况3、工况4和工况5。根据各工况分别计算2个模型的隧道涌水量和衬砌外水压力,如图

图6 2个模型涌水量对比
Fig.6 Comparison of groundwater inflow between two calculation models

图7 2个模型外水压力对比
Fig.7 Comparison of external water pressure between two calculation models
由
由
围岩渗透系数kr是涌水量和衬砌外水压力等预测计算的关键参
根据文献[

图8 涌水量
Fig.8 Groundwater inflow
由
计算2种渗透系数下的外水压力,如

图9 外水压力
Fig.9 External water pressure
由
复合式衬砌渗透系数计算公式中的参数包括初衬内外半径、初衬渗透系数、环向排水管间距、土工布厚度与渗透系数。根据

图10 不同初衬渗透系数下修正系数与各参数的关系
Fig.10 Relationship between correction coefficient and parameters at different initial lining permeability coefficients
(1) 提出的公式适用于埋深较大、地下水位较高的岩石隧道复合式衬砌渗透系数的计算。
(2) 当围岩的渗透系数为1×1
(3) 复合式衬砌渗透特性可用修正的初衬渗透系数来表征。当环向排水管间距和初衬渗透系数越大时,对应的复合式衬砌渗透系数越小;当土工布参数越大时,对应的复合式衬砌渗透系数越大。
作者贡献声明
李晓军:提供研究思路,指导论文撰写。
刘荆辉:公式的推导与分析,试验操作,试验数据分析。
参考文献
丁浩,蒋树屏,李勇.控制排放的隧道防排水技术研究[J].岩土工程学报, 2007, 29(9): 1398. [百度学术]
DING Hao, JIANG Shuping, LI Yong. Study on waterproof and drainage techniques of tunnels based on controlling drainage[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1398. [百度学术]
ARASH N H, FARHADIANB H, KATIBEH H. A comparative study on evaluation of steady-state groundwater inflow into a circular shallow tunnel[J]. Tunnelling and Underground Space Technology, 2018, 73: 15. [百度学术]
王建秀,朱合华,唐益群,等. 石灰岩损伤演化的化学热力学及动力学模型[J]. 同济大学学报(自然科学版), 2004, 32(9): 1126. [百度学术]
WANG Jianxiu, ZHU Hehua, TANG Yiqun, et al. Chemical thermodynamic and chemical kinetic model for dissolution damage evolution in limestone[J]. Journal of Tongji University (Natural Science), 2004, 32(9): 1126. [百度学术]
李宗利,裴向辉,吕从聪,等. 隧道透水性衬砌环渗透系数合理取值与工程措施探讨[J]. 岩土工程学报, 2014, 36(6): 1167. [百度学术]
LI Zongli, PEI Xianghui, LÜ Congcong, et al. Reasonable permeability coefficient and engineering measures of concrete lining circle[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1167. [百度学术]
BUTSCHER C. Steady-state groundwater inflow into a circular tunnel[J]. Tunnelling and Underground Space Technology, 2012, 32: 158. [百度学术]
TAN Yuqi, SMITH J V, LI Chunqing, et al. Predicting external water pressure and cracking of a tunnel lining by measuring water inflow rate[J]. Tunnelling and Underground Space Technology, 2018, 71: 115. [百度学术]
SHIN J H. Numerical modeling of coupled structural and hydraulic interactions in tunnel linings[J]. Structure Engineering and Mechanics, 2008, 29: 1. [百度学术]
MURILLO C A, SHIN J H, KIM K H, et al. Performance tests of geotextile permeability for tunnel drainage systems[J]. KSCE Journal of Civil Engineering, 2014, 18(3): 827. [百度学术]
何本国,张志强,傅少君,等. 考虑盲管排水和防水板隔水的隧道支护体系分担水荷载解析解[J]. 岩石力学与工程学报, 2015, 34(Z2): 3936. [百度学术]
HE Benguo, ZHANG Zhiqiang, FU Shaojun, et al. An analytical solution of water loading on tunnel supporting system with drainage of blind tube and isolation effect of waterproof membranes [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Z2): 3936. [百度学术]
张顶立,孙振宇. 海底隧道主动控制式防排水系统及其设计方法[J]. 岩石力学与工程学报, 2019, 38(1): 1. [百度学术]
ZHANG Dingli, SUN Zhenyu. An active control waterproof and drainage system of subsea tunnels and its design method[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(1): 1. [百度学术]
LU Congcong, LI Zongli. Rational permeability coefficient of a permeable lining for composite tunnel lining structures[J]. 岩石力学与工程学报, 2017, 36(8): 1930. [百度学术]
LU Congcong, LI Zongli. Rational permeability coefficient of a permeable lining for composite tunnel lining structures[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(8): 1930. [百度学术]
丁小平,刘昭,史宝童,等. 复合衬砌量化修正渗透系数隧道涌水量的计算方法[J]. 华侨大学学报(自然科学版), 2015, 36(4): 461. [百度学术]
DING Xiaoping, LIU Zhao, SHI Baotong, et al. Calculation on the calculation method of tunnel water inflow based on quantitative correction coefficient of permeability composite lining[J]. Journal of Huaqiao University(Natural Science), 2015, 36(4): 461. [百度学术]
ARJNOI P, JEONG J H, KIM C Y, et al. Effect of drainage conditions on porewater pressure distributions and lining stresses in drained tunnels[J]. Tunnelling and Underground Space Technology, 2009, 24(4): 376. [百度学术]
YING Hongwei, ZHU Chengwei, SHEN Huawei, et al. Semi-analytical solution for groundwater ingress into lined tunnel [J]. Tunnelling and Underground Space Technology, 2018, 76: 43. [百度学术]
张祉道. 隧道涌水量及水压计算公式半理论推导及防排水应用建议[J]. 现代隧道技术, 2006, 43(1): 1. [百度学术]
ZHANG Zhidao. Semi-theoretical derivation for the formulas of water inflow and water pressure acting on a tunnel and their application to the waterproofing and drainage of tunnels[J]. Modern Tunnelling Technology, 2006, 43 (1): 1. [百度学术]
WANG Xiuying, TAN Zhongsheng, WANG Mengshu, et al. Theoretical and experimental study of external water pressure on tunnel lining in controlled drainage under high water level[J]. Tunnelling and Underground Space Technology, 2008, 23(5): 552. [百度学术]
于丽,方霖,董宇苍,等. 基于围岩渗透影响范围的隧道外水压力计算方法模型试验研究[J]. 岩石力学与工程学报, 2018, 37(10): 2288. [百度学术]
YU Li, FANG Lin, DONG Yucang, et al. Research on the evaluation method of the hydraulic pressure on tunnel lining according to the range of seepage field[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10): 2288. [百度学术]
MALEKI M R. Groundwater seepage rate (GSR): a new method for prediction of groundwater inflow into jointed rock tunnels[J]. Tunnelling and Underground Space Technology, 2018, 71: 505. [百度学术]
SHIN H S, YOUN D J, CHAE S E, et al. Effective control of pore water pressures on tunnel linings using pin-hole drain method[J]. Tunnelling and Underground Space Technology, 2009, 24(5): 555. [百度学术]
赵乐. 基于堵水限排高压富水区山岭隧道防排水技术研究[D]. 成都: 西南交通大学, 2017. [百度学术]
ZHAO Le. Study on waterproof and drainage technology of mountain tunnel in high pressure and rich water area based on blocking groundwater and limiting discharge[D].Chengdu: Southwest Jiaotong University, 2017. [百度学术]
赵启超.高压富水区大断面公路隧道衬砌结构受力特征及防排水技术研究[D]. 成都: 西南交通大学, 2018. [百度学术]
ZHAO Qichao. Study on mechanical characteristics and waterproof and drainage technology of lining structure of large section highway tunnel in high pressure and rich water area[D]. Chengdu: Southwest Jiaotong University, 2018. [百度学术]
郑波,王建宇,吴剑.基于等效渗透系数计算衬砌水压力方法研究[J]. 现代隧道技术, 2011, 48(6): 43. [百度学术]
ZHENG Bo, WANG Jianyu, WU Jian. Study of the calculation of external water pressure on tunnel lining based on the equivalent permeability coefficient of the composite lining[J]. Modern Tunnelling Technology, 2011, 48(6): 43. [百度学术]
吴吉春,薛禹群. 地下水动力学[M].北京: 中国水利水电出版社, 2009. [百度学术]
WU Jichun, XUE Yuqun. Groundwater dynamics[M]. Beijng: China Water&Power Press, 2009. [百度学术]
王毅才. 隧道工程[M]. 北京:人民交通出版社, 2006. [百度学术]
WANG Yicai. Tunnel engineering[M]. Beijing: China Communications Press, 2006. [百度学术]
BEAR J. Dynamics of fluids in porous media[M]. New York: American Elsevier Publishing Company, 1972. [百度学术]
应宏伟,朱成伟,龚晓南. 考虑注浆圈作用水下隧道渗流场解析解[J]. 浙江大学学报(工学版), 2016, 50(6): 1018. [百度学术]
YING Hongwei, ZHU Chengwei, GONG Xiaonan. Analytic solution on seepage field of underwater tunnel considering grouting circle[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(6): 1018. [百度学术]
王建宇. 再谈隧道衬砌水压力[J].现代隧道技术, 2003, 40(3):5. [百度学术]
WANG Jianyu. Once more on hydraulic pressure upon lining[J]. Modern Tunnelling Technology, 2003, 40(3):5. [百度学术]
FARHADIAN H, KATIBEH H. Groundwater seepage estimation into Amirkabir tunnel using analytical methods and DEM and SGR method[J]. International Journal of Civil and Environmental Engineering, 2015, 9(3): 296. [百度学术]