摘要
针对航空发动机镍基单晶涡轮叶片高温服役下蠕变寿命的取向敏感性难题,开展了DD6单晶合金[001]、[011]与[111]3种典型取向在98
提高涡轮进口温度是提升发动机功率和效率的根本技术途径,为了满足高温下的服役需求,国内外所有的先进航空发动机涡轮叶片都采用镍基单晶高温合金制造。其中,镍基单晶合金DD6由于具有良好的抗氧化,抗热腐蚀性能,以及优异的蠕变和疲劳性能,因此被用于装备国产第四代主力战机的WS-1X发动机以及装备国产大飞机C919的CJ1000AX发动机的涡轮叶片制
单晶涡轮叶片在高温、高转速(高离心力)的环境下长时服役,叶片将发生蠕变变形甚至断裂破坏,危及发动机的安全。由于单晶材料的晶胞模量的各向异性,单晶合金在蠕变过程中表现出明显的各向异性与取向敏感性,对此,国内外学者已经开展了大量的研究。Han等
目前对单晶高温合金不同取向下蠕变性能差异的机理与寿命模型间的关联尚未完全建立。本文基于第二代镍基单晶高温合金DD6,采用试验与有限元分析相结合的方法,研究[001]、[011]与[111]3种典型取向试样在98
本项目的蠕变试验于陕西省航空发动机结构强度与可靠性重点实验室完成,所采用的试验机为RDL100微控电子式蠕变持久试验机,采用恒定力控制,同时采用上中下三段式加热使高温炉内温度均匀分布,使试样受热均匀,每段配备Q型热电耦进行测温,达到校正试件温度的目的。试验采用接触式高温引伸计测量试样标距段的应变,获取完整蠕变曲线。
DD6单晶高温合金主要成分见
镍基单晶合金DD6的微观组织是由宽度为0.5~1μm的立方状
为完成不同取向下DD6单晶的蠕变试验并获取应变-时间曲线,本研究依照GB/T 2039-2012设计圆棒试样,如

图2 98
Fig.2 Creep specimen size at 98
试验获得的不同取向下的蠕变寿命与延伸率如

图3 3种取向下的蠕变曲线图
Fig.3 Creep curves under three orientations
图

图4 3种取向试样断口的局部特征图
Fig.4 Local characteristics of fracture of three orientations
[011]取向的解理面如

图5 3种取向下断裂试样示意图
Fig.5 Schematic diagram of fractured sample under three orientations
[111]取向下的单晶合金蠕变断裂后断口形貌如
3种取向下的试件伸长量如
这些不同的解理面表明,不同取向下试样断裂时孔洞产生的位置,空洞附近的裂纹的扩展方向不同,使得这些不同取向下的试样断口的解理面形态各异,最终导致蠕变寿命与延伸率的不同。
为观测蠕变后不同取向的单晶合金微结构演化,采用

图6 微观形貌观测取样位置
Fig.6 Sampling position for microscopic morphology

图7 [001]、[011]和[111]取向断口纵截面微观结构形貌
Fig.7 Microstructure of longitudinal section of [001] [011] and [111] orientation fracture
图
图
图
单晶的蠕变变形可归结于滑移系的开动,基于一个晶体塑性理论的模
(1) |
为滑移系的分切应力,可表示为
∶ | (2) |
式中:是取向因子,可表示为
(3) |
式中:和是两个不同的向量,分别表示滑移系开动的方向和该滑移系对应的滑移面单位法向量的方向。
用表示宏观应变率,已知在蠕变变形中可分弹性变形和非弹性变形两种,那么用e表示弹性应变率,用表示非弹性应变率,可得
c | (4) |
弹性部分的应力应变关系可用胡克定律来表示,非弹性部分则可得
(5) |
如果将蠕变变形用不同滑移系的蠕变变形来表示,则可得
(6) |
式中:,,分别表示八面体,十二面体和六面体的蠕变变形的应变。
由于镍基单晶高温合金特殊的两相组织形式,对于合金蠕变的强化作用主要来源于两方面,一方面是在基体相和强化相中间形成的相界面对位错产生的阻碍作用,把这种相界面处的位错网络对蠕变产生的阻碍应力用表
(7) |
式中:是伯格斯矢量的模;为剪切模量;是一个常数;表示γ基体相不同取向的位错密度,其演化规律为
(8) |
式中:,都是材料常数。
另一方面在蠕变过程中,强化相对于蠕变中的位错运动也有阻碍作用,位错要越过强化相需要一个较大的门槛应力,称为Orowan应力,记为。蠕变阶段位错需要克服强化相的阻碍作用,这种行为被称为Orowan绕过机制。Tinga等学
(9) |
式中:表示基体通道的宽度;是剪切模量;表示伯格斯矢量的模;是材料常数。通过对蠕变中断试验后得到的处于筏化不同阶段的试样显微组织的分析中不难看出,基体通道的粗化程度与蠕变时间呈显一个抛物线关系,表示为
(10) |
式中:为初始基体通道宽度;为表征材料筏化速率的参数;可由微结构观测得到;为蠕变时间。
高温合金材料在拉伸时发生破坏的方式是直接瞬断还是长时蠕变断裂和外部荷载大小与材料屈服应力有一定关系。张诚江等
(11) |
可分为以下3种情况:
(1)当时,即分切应力非常小,小于位错进入相界面位错网络的临界值时,此时令;
(2)当时,可知,此时材料分切应力小于临界分切应力,进入蠕变变形的状态。基于Kachanov和Ravbot- no
(12) |
(13) |
采用葛庭燧-Dorn (K-D)公式与Arrhenius表达式相结合的形式,则
(14) |
式中:为绝对温度;为气体常数;为激活能。
(3)当且时,也就是,此时分切应力大于材料的临界分切应力,材料将发生瞬时拉伸破坏,位错直接越过相界面的位错网络和强化相,上述所推出的蠕变本构方程和损伤方程将不再适用。
可以将
(15) |
式中:N为某滑移系下的滑移面开动方向的个数,八面体滑移系(Oct1,<110>[111])与十二面体滑移系(Oct2,<112>[111])的N为12,六面体滑移系(Cub,<110>[100])的N为6。式(
单晶合金在蠕变时随蠕变时间的增长,一般呈现出3个不同的阶段,即蠕变第1阶段,蠕变第2阶段和蠕变第3阶段。在蠕变第1阶段应变量持续增加,但蠕变速率不断降低,材料发生硬化,又称减速蠕变阶段;而在蠕变第2阶段,蠕变速率维持在最小值,并保持相当长的一段时间,又称稳态蠕变阶段;在蠕变进行到第3阶段时,伴随材料的颈缩,蠕变速率迅速上升,蠕变变形急剧增长,随后试样发生断裂破坏,又称蠕变加速阶段。对于DD6单晶合金材料来说,在高于1 00
把蠕变损伤本构模型通过ABAQUS有限元软件,并将用户子程序导入实现模型的计算,得到如

图8 3种取向980°C/300MPa试验曲线与模拟曲线
Fig.8 Test and simulation curves for three orientations at 980°C/300MPa

图9 3种取向980°C/300MPa有限元仿真结果
Fig.9 Finite element simulation results of three orientations at 980°C/300MPa
由
(1)对3种取向下的试验件进行了980°C/300MPa条件下的蠕变试验,[011]取向合金的蠕变第二阶段的蠕变速率最高,寿命最短;[001]取向合金的蠕变速率和寿命居中;[111]取向合金的稳态蠕变速率也较低,蠕变寿命最长。同时晶体取向与试样的蠕变伸长率也有一定关系,[001]和[111]取向的蠕变伸长率较高,延性较好,而[011]取向蠕变伸长率较低。
(2)通过对[001]、[011]和[111]3个取向试样980°C/300MPa下的蠕变断口形貌观测,[011]取向的颈缩现象较明显,断口呈椭圆形,整体呈台阶状的层片形,层与层之间有明显的解理台阶;[001]和取向呈明显的解理断裂特征,其中,[001]方向的断口有正方体形或者圆形的解理面;[111]取向断口则分布大量的正三角形的解理面。
(3)在SEM扫描电镜观测下,可以看到3种取向下试样的非标距段部分纵截面的两相结构未发生明显的筏化现象。[001]取向远离断口处纵截面两相结构呈长条状的筏状组织,而靠近断口处已经处于解筏阶段;[011]取向远离断口处纵截面两相结构中立方状的
(4)采用试验和有限元相结合的方式,基于原有的晶体塑性理论下的蠕变本构模型,建立了考虑晶体各向异性特征的蠕变本构模型和蠕变寿命预测模型,通过Abaqus子程序实现有限元的模拟工作,并与试验结果进行对比,发现模型能较好的反映试样的蠕变寿命和变形,对于工程实际问题有较大的参考价值。
作者贡献声明
贺鹏飞:提供研究的构思,设计,及方案的提出,论文审阅;
吴宸:参与论文的试验内容,数据的收集,模型的建立,起草论文;
张诚江:数据分析,论文结果讨论,论文的审阅及定稿。
参考文献
张诚江. 镍基合金微结构演化与铸造缺陷对蠕变及疲劳性能影响机理研究[D]. 西安:西安建筑科技大学,2018. [百度学术]
ZHANG Chengjiang. Study on mechanism of microstructure evolution and casting defects of nickel-based superalloys on creep & fatigue properties [D]. Xi'an: Xi'an University of Architecture and Technology. 2018. [百度学术]
WEN Z X, ZHANG D X, LI S W, et al. Anisotropic creep damage and fracture mechanism of nickel-base single crystal superalloy under multiaxial stress [J]. Journal of alloys and compounds. 2017, 692: 301. [百度学术]
ZHAO Y S, ZHANG J, SONG F, et al. Effect of trace boron on microstructural evolution and high temperature creep performance in re-contianing single crystal superalloys [J]. Progress in natural science: materials international. 2020, 30(3): 11. [百度学术]
HAN Guoming, YANG Yanhong, YU Jinjiang, et al. Temperature dependence of anisotropic stress-rupture properties of nickel-based single crystal superalloy SRR99[J]. The Chinese journal of nonferrous metals. 2011, 21(8): 1717. [百度学术]
CHATTERJEE D, HAZARI N, DAS N, et al. Microstructure and creep behavior of DMS4-type nickel based superalloy single crystals with orientations near <001> and <011> [J]. Materials science and engineering A. 2010, 528(2): 604. [百度学术]
YU J, LI J R, ZHAO J Q, et al. Orientation dependence of creep properties and deformation mechanism in DD6 single crystal superalloy at 760°C and 785MPa [J]. Materials Science and Engineering A. 2013, 560(10): 47. [百度学术]
LIU J L, JIN T, SUN X F, et al. Anisotropy of stress rupture properties of a Ni base single crystal superalloy at two temperatures[J]. Materials Science and Engineering A, 2008, 479(1): 277. [百度学术]
YONG S, SUGUI T, HUICHEN Y, et al. Microstructure evolution and its effect on creep behavior of single crystal Ni-based superalloys with various orientations [J]. Materials Science and Engineering A. 2016, 668(21): 243. [百度学术]
YAN W, YUANX, ZHAO W, et al. Effect of crystallographic orientation on impression creep behaviors of single crystal base on crystal plasticity theory[J]. Materials Science and Engineering A. 2017, 707(7): 12. [百度学术]
LI Y, WANG L, ZHANG G, et al. Creep anisotropy of a 3rd generation nickel-base single crystal superalloy at 850 ℃ [J]. Materials Science and Engineering A. 2019, 760(8): 26. [百度学术]
LATIEF F H, KAKEHI K. Influence of heat treatment on anisotropic creep behavior of aluminide coating on a Ni-base single crystal superalloy [J]. Materials and Design, 2013, 52: 134. [百度学术]
LATIEF F H, KAKEHI K. Effects of Re content and crystallographic orientation on creep behavior of aluminized Ni-base single crystal superalloys [C]. ES. ES, 2013: 485. [百度学术]
LATIEF F H, KAKEHI K, MURAKAMI H. Anisotropic creep properties of aluminized Ni-based single-crystal superalloy at intermediate and high temperature [J]. ScriptaMaterialia, 2013, 68(2): 126. [百度学术]
KAKEHI K, LATIEF F H, SATO T. Influence of primary and secondary orientations on creep rupture behavior of aluminized single crystal Ni-based superalloy[J]. Materials Science and Engineering A. 2014, 604(16): 148. [百度学术]
LATIEF A F H, KAKEHI A K, AN-CHOU Y H, et al. Influences of ruthenium and crystallographic orientation on creep behavior of aluminized nickel-base single crystal superalloys [J]. Materials Science and Engineering A. 2014, 592(2):143. [百度学术]
岳珠峰, 吕震宙. 镍基单晶合金蠕变第一阶段性能晶体取向相关性研究[J]. 材料科学与工艺, 1998(2): 48. [百度学术]
YUE Zhufeng, LÜ Zhenzhou. Dependence of primary creep behavior of nickel-base single crystal superalloy on crystallographic orientations [J]. Materials Science and Technology. 1998(2): 48. [百度学术]
岳珠峰, 吕震宙. 复杂应力状态下镍基单晶合金低周疲劳寿命预测模型[J]. 稀有金属材料与工程, 2000(1): 29. [百度学术]
YUE Zhufeng, LV Zhenzhou. AModle of Multiaxial Low Cycle Fatigue Life Time of a Nikel-Base Single Crystal [J].Rare Metal Materials and Engineering,2000(1): 29. [百度学术]
岳珠峰,陶仙德,尹泽勇,等.一种镍基单晶超合金高温低周疲劳的晶体取向相关性模型[J].应用数学和力学, 2000(4): 373. [百度学术]
YUE Zhufeng, TAO Xiande, YING Zeyong, et al. A crystallographic model for the orientation dependence of low cyclic fatigue property of a nickel-base single crystal superalloy [J]. Applied Mathematics and Mechanics,2000(4): 373. [百度学术]
ZHANG C, HU W, WEN Z, et al. Creep residual life prediction of a nickel-based single crystal superalloy based on microstructure evolution [J]. Materials Science and Engineering A,2019(756): 108. [百度学术]
YANG Yanqiu, WEN Zhixun, ZHAO Yanchao, et al. Effect of crystallographic orientation on the corrosion resistance of Ni-based single crystal superalloys [J]. Corrosion Science, 2020(170): 108643. [百度学术]
刘大顺. 镍基单晶多轴蠕变断裂机理及寿命预测研究[D]. 西安: 西北工业大学, 2015 [百度学术]
LIU Dashun. Study on multiaxial creep fracture mechanism and life prediction of nickel base single crystal [D]. Xi'an: Northwestern Polytechnical University,2015 [百度学术]
MACLACHLAN D W, WRIGHT L W,GUNTURI S, et al. Constitutive modelling of anisotropic creep deformation in single crystal blade alloys SRR99 and CMSX-4[J]. International Journal of Plasticity,2000, 17(4): 441. [百度学术]
GUNTUR S S K, MACLACHLAN D W, KNOWLES D M. Anisotropic creep in CMSX-4 in orientations distant from [百度学术]
<001> [J].Materials Science and Engineering A, 2000, 289(1): 289. [百度学术]
杨林,程印,王新广,等.Mo对含Ru单晶高温合金显微组织和蠕变性能的影响[J].沈阳工业大学学报, 2021, 43(5): 284. [百度学术]
YANG Lin, CHENG Yin, WANG Xinguang, et al. Effect of Mo addition on microstructureand creep propertiesof Ru-containing single crystal superalloy [J].Journal of Shenyang University Of Technology , 2021, 43(5): 284. [百度学术]
HILL R. Generalized constitutive relations for incremental deformation of metal crystals by multislip [J]. Journal of the Mechanics and Physics of Solids, 1966, 14(2): 95. [百度学术]
HILL R, Rice J R. Constivutive analysis of elastic-plastic crystals at arbitrary strain [J]. Journal of the Mechanics and Physics of Solids, 1972 (6): 401 [百度学术]
岳珠峰. 确定激活滑移系类型的一种方法——单晶体颈缩和晶格转动分析[J]. 燃气涡轮试验与研究, 2003, 16(3): 6. [百度学术]
YUE Zhufeng. A method for determining the type of active slip system -- single crystal necking and lattice rotation analysis [J]. Gas Turbine Test and Research, 2003, 16(3): 6. [百度学术]
PREUBNER J, RUDNIK Y, BREHM H, et al. A dislocation density based material model to simulate the anisotropic creep behavior of single-phase and two-phase single crystals [J]. International Journal of Plasticity, 2009, 25(5): 973. [百度学术]
ZHAO L G, O’DOWD N P, BUSSO E P. A coupled kinetic-constitutive approach to the study of high temperature crack initiation in single crystal nickel-base superalloys [J]. Journal of the Mechanics and Physics of Solids. 2006, 54(2): 288. [百度学术]
DEPRE C,FIVEL M,TABOUROT L. A dislocation-based model for low-amplitude fatigue behaviour of face-centred cubic single crystals [J]. ScriptaMaterialia. 2008, 58(12):1086. [百度学术]
KUMAR R S, WANG A J, MCDOWELL D L. Effects of microstructure variability on intrinsic fatigue resistance of nickel-base superalloys-a computational micromechanics approach [J]. International Journal of Fracture,2006, 137(1):173. [百度学术]
KAKEHI K. Influence of secondary precipitates and crystallographic orientation on the strength of single crystals of a Ni-based superalloy [J]. Metallurgical and Materials Transactions A,1999, 30(5):1249. [百度学术]
TINGA T,BREKELMANS W A M,GEERS M G D. Cube slip and non-Schmid effects in single crystal Ni-base superalloys [J]. Modelling and Simulation in Materials Science and Engineering,2010, 18(1): 015005. [百度学术]
YUAN C, Guo J T, Yang H C, et al. Deformation mechanism for high temperature creep of a directionally solidified nickel-base superalloy[J]. ScriptaMaterialia. 1998, 39(7): 991. [百度学术]
RABOTNOV Y N. Creep problems in structural members [M]. Amsterdam:North-Holland,1969. [百度学术]
YEH N M, KREMPL E, DANGVAN K, et al. Advances in multiaxial fatigue [M]. [S.l.]:ASTM, 1993. [百度学术]
ASARO R J. Micromechanics of crystals and polycrystals [J]. Advances in Applied Mechanics, 1983, 23(8): 1. [百度学术]