摘要
再生混凝土因掺入再生骨料使其内部微观结构、力学与热力学性能均与普通混凝土有所区别。目前,对再生混凝土力学性能已有较多研究,但对其热力学性能的关注则相对较少。针对影响再生混凝土导热性能的主要因素,如再生骨料性质与取代率、再生微粉、环境温度等,分析再生混凝土导热系数的变化规律。通过归纳分析现有试验数据,提出了再生混凝土导热系数经验预测公式。此外,现有研究表明,再生骨料孔隙率直接影响再生混凝土导热系数,掺入再生骨料和再生微粉后,混凝土的导热系数明显下降,细骨料全取代时下降幅度可达48%;随环境温度升高,混凝土导热系数明显降低。
建筑行业不但耗能巨大,同时也排放大量的CO2。全球建筑行业每年消耗的电能和排放的CO2分别以年均2.5%和1.0%的速度增
城镇化进程产生了大量的建筑固体废弃物,目前中国每年产生大约1 800万t建筑固体废弃
目前已有较多关于再生骨料和再生微粉对再生混凝土力学性能和耐久性能研究的综
如
注: k为有效导热系数;k1为连续相材料导热系数;k2为分散相材料导热系数;v1为连续相材料体积分数;v2为分散相材料体积分数;ki为第i相的导热系数;vi第i相的体积分数;M=1-(1-P
混凝土为一种多相复合材料,主要包括连续相水泥砂浆、分散相粗骨料、骨料和水泥砂浆之间的界面过渡区及孔隙。因此,采用两相导热系数模型来计算混凝土导热系数存在一定误差。Wang
如
(1) |
(2) |
式中:η1为再生粗骨料取代率;q1为再生粗骨料压碎指标;为天然粗骨料压碎指标;η2为再生细骨料取代率;q2为再生细骨料压碎指标;α折减系数,通过试验确定。
k=0.354 9 | (3) |
式中:ρ为再生混凝土的表观密度。

图1再生混凝土细观示意图
Fig. 1 Schematic microstructure of recycled aggregate concrete
从
采用现有Harmathy模
注: 括号中数值为与试验数值的误差。
混凝土连续相和非连续相的物理性质直接影响混凝土的导热性能。影响再生混凝土导热系数的主要因素包括再生骨料性质、再生微粉性质及其取代率等;同时,相关研
注: RP (recycled powder )为再生微粉;RCA (recycled coarse aggregate)为再生粗骨料;RFA (recycled fine aggregate)为再生细骨料。
不同来源的再生骨料物理性能差别较大,因而对所制备的再生混凝土导热性能影响不同。Miguel
对

图2 混凝土导热系数
Fig.2 Thermal conductivity of concrete
骨料的吸水率对混凝土的导热系数影响明显,Kazmi
k=-3.45 X+12.07 | (4) |
式中:k为混凝土导热系数;X为骨料吸水率。
Kazmi
通过对
kr=kn/k0 | (5) |
式中:kr为相对导热系数;kn为再生骨料取代率为n时混凝土的导热系数;k0为再生骨料取代率为0,即普通混凝土的导热系数。

图3 再生粗骨料混凝土导热系数
Fig. 3 Thermal conductivity of recycled coarse aggregate concrete

图4 再生细骨料混凝土导热系数
Fig. 4 Thermal conductivity of recycled fine aggregate concrete
不同再生粗骨料取代率的再生混凝土相对导热系数见
如
相比于再生粗骨料取代率,相同取代率的情况下,再生细骨料混凝土导热系数的下降幅度要高于再生粗骨料混凝土,但是离散性也更大。这是因为再生细骨料相比于再生粗骨料孔隙率更高,再生细骨料性能波动也较大。并且再生细骨料中含有一定量的粉料,粉料含量和成份的不同对混凝土性能有很大的影响,进一步导致再生细骨料混凝土导热系数数据较为离散。
通过

图5 不同水灰比再生骨料混凝土相对导热系数
Fig. 5 Relative thermal conductivity of recycled aggregate concrete with different water to binder ratios
kr= -0.001 9x+0.967
式(6)~(9)中:kr为再生混凝土相对导热系数;x为再生粗(细)骨料取代率。
通过公式(6)~(9)可以看出,当水灰比较大时,再生粗、细骨料混凝土导热系数数据离散程度降低,这可能是因为随着水灰比的增加,混凝土中液相的比例增加,降低了再生骨料性能波动对混凝土导热系数离散性的影响。但是这种细分方法还具有一定的局限性,数据拟合程度有所改善,但是数据拟合程度还处于一个相对较低的水平,尤其对于再生细骨料混凝土。
水泥胶凝材料的组成对混凝土导热系数也有着明显的影响,Demirboĝa

图6 再生微粉取代率对导热系数的影
Fig. 6 Effect of recycled powder replacement ratio on thermal conductivity
已有研究表明,混凝土的导热系数随着温度的升高而降

图7 再生骨料混凝土高温环境下的导热系
Fig. 7 Thermal conductivity of recycled aggregate concrete at an elevated temperatur
混凝土密度与混凝土内部孔隙率有明显的关系,增加混凝土的孔隙率会明显降低混凝土的密度,降低混凝土的导热系数。相关研
将
k=0.063 1 | (10) |

图8 再生混凝土导热系数与密度的相关性
Fig. 8 General correlation between thermal conductivity and density of recycled concrete
再生混凝土的导热系数低于普通混凝土,从而使得再生混凝土墙体的传热系数低于普通混凝土墙体。将再生混凝土墙体应用于建筑外围护结构中将有助于降低建筑制热和制冷能耗。同时,基于生命周期评价(LCA)的角度,采用再生混凝土对环境的影响远低于普通混凝
Ganesan
Hunger
本文总结了再生混凝土导热性能的国内外研究现状,系统回顾了混凝土导热系数理论,剖析了影响再生混凝土导热系数的关键因素,分析拟合了再生混凝土导热系数经验公式,并对现有功能性再生混凝土进行了评述。
再生骨料的物理性质对再生混凝土的导热系数有一定的影响,主要表现为骨料吸水率较高,密度较低时(即孔隙率较高时),混凝土导热系数较低。再生骨料取代率对再生混凝土导热系数有着显著的影响,且细骨料较粗骨料影响更大,再生粗骨料全取代时,混凝土导热系数降低量可达29%,再生细骨料全取代时,混凝土导热系数降低量可达48%。同时,采用再生微粉取代部分水泥时,可以有效降低混凝土的导热系数。环境温度对再生混凝土导热系数有显著的影响,随着温度的升高,其导热系数明显降低,并且随着再生骨料取代率的增加,其导热系数降低量增加。
基于再生混凝土导热系数相关实验数据,通过拟合分析,提出了再生混凝土导热系数与密度的经验回归关系式(
再生骨料附着砂浆含量、再生细骨料孔隙率、不同种类再生粉体以及不同粒径再生粉体等对再生混凝土导热系数的影响还需要进一步研究,为建立适宜于再生混凝土的导热系数理论奠定试验基础。
将不同类型的再生混凝土应用于不同的建筑结构中,是一种提高废弃混凝土资源化利用率的有效途径;将传统再生混凝土与功能化再生混凝土相组合,以实现再生混凝土结构功能一体化设计,是未来的一个研究方向。
作者贡献声明
肖建庄:论文的选题、指导、修改。
郝潞岑:具体工作的开展和论文撰写。
曹万智:论文的指导、修改。
许碧菀:论文的修改。
参考文献
ASADI I, SHAFIGH P, Hassan Z, et al. Thermal conductivity of concrete – a review[J]. Journal of Building Engineering, 2018, 20: 81. [百度学术]
SINGH R, SHUKLA S, GUPTA N. Potential of microencapsulated PCM for energy savings in buildings: a critical review[J]. Sustainable Cities and Society, 2020, 53: 101884. [百度学术]
REAL S, GOMES M, MORET A, et al. Contribution of structural lightweight aggregate concrete to the reduction of thermal bridging effect in buildings[J]. Construction and Building Materials, 2016, 121: 460. [百度学术]
YUE G, MA Z, LIU M, et al. Damage behavior of the multiple ITZs in recycled aggregate concrete subjected to aggressive ion environment[J]. Construction & Building Materials, 2020, 245: 118419. [百度学术]
LU W. Big data analytics to identify illegal construction waste dumping: a Hong Kong study[J]. Resources, Conservation and Recycling, 2019. [百度学术]
THOMAS C, DE J, CIMENTADA A, et al. Macro- and micro- properties of multi-recycled aggregate concrete[J]. Journal of Cleaner Production, 2020, 245: 118843. [百度学术]
WANG R, YU N, LI Y. Methods for improving the microstructure of recycled concrete aggregate: a review[J]. Construction and Building Materials, 2020, 242: 118164. [百度学术]
SARGAM Y, WANG K, ALLEMAN J. Effects of modern concrete materials on thermal conductivity[J]. Journal of Materials in Civil Engineering, 2020, 32(4): 4020058. [百度学术]
TANG Q, MA Z, WU H, et al. The utilization of eco-friendly recycled powder from concrete and brick waste in new concrete: a critical review[J]. Cement and Concrete Composites, 2020, 114: 103807. [百度学术]
GUO H, SHI C, GUAN X, et al. Durability of recycled aggregate concrete – a review[J]. Cement and Concrete Composites, 2018, 89: 251. [百度学术]
TAM V, SOOMRO M, EVANGELISTA A. A review of recycled aggregate in concrete applications (2000―2017)[J]. Construction and Building Materials, 2018, 172: 272. [百度学术]
WANG J, CARSON J, NORTH M, et al. A new approach to modelling the effective thermal conductivity of heterogeneous materials[J]. International Journal of Heat & Mass Transfer, 2006, 49(17/18): 3075. [百度学术]
GONZO E. Estimating correlations for the effective thermal conductivity of granular materials[J]. Chemical Engineering Journal, 2002, 90(3): 299. [百度学术]
HARMATHY T Z. Thermal properties of concrete at temperature[J]. Journal of Material, 1970, 5: 47. [百度学术]
CAMPBELL-ALLEN D, THORNE C. The thermal conductivity of concrete[J]. Magazine of Concrete Research, 1963, 15(43): 39. [百度学术]
KHAN M I. Factors affecting the thermal properties of concrete and applicability of its prediction models[J]. Building & Environment, 2002, 37(6): 607. [百度学术]
GONG L, WANG Y, CHENG X, et al. A novel effective medium theory for modelling the thermal conductivity of porous materials[J]. International Journal of Heat & Mass Transfer, 2014, 68: 295. [百度学术]
王立成,常泽,鲍玖文. 基于多相复合材料的混凝土导热系数预测模型[J]. 水利学报, 2017, 48(7): 765. [百度学术]
WANG Licheng, CHANG Ze, BAO Jiuwen. Prediction model for the thermal conductivity of concrete based on its composite structure [J]. Journal of Hydraulic Engineering, 2017,48(7):765 [百度学术]
CHU Z, ZHOU G, WANG Y, et al. Thermal–physical properties of selected geomaterials: coal, sandstone and concrete based on basic series and parallel models[J]. Environmental Earth Sciences, 2018, 77(5): 181. [百度学术]
陈春,钱春香,许燕波. 基于最小热阻理论的混凝土导热系数计算模型[J]. 东南大学学报(自然科学版), 2012, 42(2): 383. [百度学术]
CHEN Chun, QIAN Chunxiang, XU Yanbo. Calculation model of thermal conductivity of concrete based on minimum thermal resistance theory [J]. Journal of Southeast University(Natural Science), 2012, 42(2): 383. [百度学术]
ZHU L, DAI J, BAI G, et al. Study on thermal properties of recycled aggregate concrete and recycled concrete blocks[J]. Construction & Building Materials, 2015, 94: 620. [百度学术]
NGOHPOK C, SATA V, SATIENNAM T, et al. Mechanical properties, thermal conductivity, and sound absorption of pervious concrete containing recycled concrete and bottom ash aggregates[J]. Ksce Journal of Civil Engineering, 2018, 22: 1369. [百度学术]
肖建庄,黄运标,任红梅. 混凝土热工参数影响因素及理论计算[J]. 粉煤灰, 2008, 20(5): 17. [百度学术]
XIAO Jianzhuang, HUANG Yunbiao, REN Hongmei. Influence factors of thermal properties of concrete and theoretical analysis [J]. Coal Ash, 2008, 20(5): 17. [百度学术]
ZHAO H, LIU F, YANG H. Thermal properties of coarse RCA concrete at elevated temperatures[J]. Applied Thermal Engineering, 2018, 140: 180. [百度学术]
SARGAM Y, WANG K, ALLEMAN J. Effects of modern concrete materials on thermal conductivity[J]. Journal of Materials in Civil Engineering, 2020, 32(4): 4020051. [百度学术]
OMRANE M, RABEHI M. Effect of natural pozzolan and recycled concrete aggregates on thermal and physico-mechanical characteristics of self-compacting concrete - science direct[J]. Construction & Building Materials, 2020, 247: 1. [百度学术]
MARÍA F, JOSÉ M, ITZIAR G, et al. Experimental study on thermal conductivity of self-compacting concrete with recycled aggregate[J]. Materials, 2015, 8(7):4457. [百度学术]
PECUR I, STIRMER N, MILOVANOVIC B. Recycled aggregate concrete for nearly zero energy buildings[J]. Magazine of Concrete Research, 2014, 67(11/12): 575. [百度学术]
CANTERO B, BRAVO M, BRITO J, et al. Thermal performance of concrete with recycled concrete powder as partial cement replacement and recycled CDW aggregate[J]. Applied Sciences, 2020, 10(13): 4540. [百度学术]
MIGUEL B, JORGE B, LUÍS E. Thermal performance of concrete with recycled aggregates from cdw plants[J]. Applied Sciences, 2017, 7(7): 740. [百度学术]
LANEYRIE C, BEAUCOUR A, GREEN M, et al. Influence of recycled coarse aggregates on normal and high performance concrete subjected to elevated temperatures[J]. Construction & Building Materials, 2016, 111(15): 36. [百度学术]
KAZMI S, MUNIR M, WU Y, et al. Investigation of thermal performance of concrete incorporating different types of recycled coarse aggregates[J]. Construction & Building Materials, 2020, 270:121433. [百度学术]
肖建庄,宋志文,张枫. 混凝土导热系数试验与分析[J]. 建筑材料学报, 2010, 13(1): 17. [百度学术]
XIAO Jianzhuang, SONG Zhiwen, ZHANG Feng. An experimental study on thermal conductivity of concrete [J]. Journal of Building Materials, 2010, 13(1): 17. [百度学术]
游帆,郑建岚. 全再生骨料混凝土导热性能试验研究[J]. 福州大学学报(自然科学版), 2018, 46(3): 391. [百度学术]
YOU Fan, ZHENG Jianlan. Experimental study of thermal conductivity of recycled concrete[J]. Journal of Fuzhou University(Natural Science), 2018, 46(3): 391. [百度学术]
潘凯楠. 再生细骨料混凝土高温下材料力学及其热工性能研究[D]. 哈尔滨:哈尔滨工业大学, 2019. [百度学术]
PAN Kainan. Research on mechanical and thermal properties of fine recycled aggregate concrete at elevated temperatures [D]. Harbin: Harbin Institute of Technology, 2019 [百度学术]
DEMIRBO A R, GÜL R. Thermal conductivity and compressive strength of expanded perlite aggregate concrete with mineral admixtures[J]. Energy and Buildings, 2003, 35(11): 1155. [百度学术]
KHALIQ W, KODUR V. Thermal and mechanical properties of fiber reinforced high performance self-consolidating concrete at elevated temperatures[J]. Cement and Concrete Research, 2011, 41(11): 1112. [百度学术]
COLLET F, PRETOT S. Thermal conductivity of hemp concretes: variation with formulation, density and water content[J]. Construction & Building Materials, 2014, 65(13): 612. [百度学术]
ALENGARAM U, MUHIT B, JUMAAT M, et al. A comparison of the thermal conductivity of oil palm shell foamed concrete with conventional materials[J]. Materials & Design, 2013, 51: 522. [百度学术]
DEMIRBOGA R, KAN A. Thermal conductivity and shrinkage properties of modified waste polystyrene aggregate concretes[J]. Construction & Building Materials, 2012, 35: 730. [百度学术]
GAO T, JELLE B, GUSTAVSEN A, et al. Aerogel-incorporated concrete: an experimental study[J]. Construction & Building Materials, 2014, 52: 130. [百度学术]
GÜl R, OKUYUCU E, TÜRKMEN I, et al. Thermo-mechanical properties of fiber reinforced raw perlite concrete[J]. Materials Letters, 2007, 61(29): 5145. [百度学术]
PEŠTA J, PAVLŮ T, FOŘTOVÁ K, et al. Sustainable masonry made from recycled aggregates: LCA case study[J]. Sustainability, 2020, 12(4): 1581. [百度学术]
HOSSAIN M, POON C, LO I, et al. Comparative environmental evaluation of aggregate production from recycled waste materials and virgin sources by LCA[J]. Resources, Conservation and Recycling, 2016, 109: 67. [百度学术]
XIA B, DING T, XIAO J. Life cycle assessment of concrete structures with reuse and recycling strategies: a novel framework and case study[J]. Waste Management, 2020, 105: 268. [百度学术]
GANESAN S, OTHUMAN M, MOHD Y, et al. Thermal properties of foamed concrete with various densities and additives at ambient temperature[J]. Applied Mechanics & Materials, 2015, 747: 230. [百度学术]
LIU M, ALENGARAM U, JUMAAT M, et al. Evaluation of thermal conductivity, mechanical and transport properties of lightweight aggregate foamed geopolymer concrete[J]. Energy & Buildings, 2013, 72(2014): 238. [百度学术]
王洪镇,杨俊晓. 流态轻集料微孔混凝土的试验研究[J]. 建筑材料学报,2011(2): 123. [百度学术]
WANG Hongzheng, YANG Junxiao. Experimental research of fluid lightweight aggregate micro foam concrete [J]. Journal of Building Materials, 2011(2): 123. [百度学术]
张景文. 再生微粉泡沫混凝土的制备与性能研究[D]. 西宁:青海大学, 2020. [百度学术]
ZHANG Jingwen. Preparation and properties of recycled micropowder foam concrete [D].Xinin: Qinghai University, 2020. [百度学术]
HUNGER M, ENTROP A, MANDILARAS I, et al. The behavior of self-compacting concrete containing micro-encapsulated phase change materials[J]. Cement & Concrete Composites, 2009, 31(10): 731. [百度学术]
XU B, MA H, LU Z, et al. Paraffin/expanded vermiculite composite phase change material as aggregate for developing lightweight thermal energy storage cement-based composites[J]. Applied Energy, 2015, 160: 358. [百度学术]
SHAFIGH P, ASADI I, MAHYUDDIN N. Concrete as a thermal mass material for building applications - a review[J]. Journal of Building Engineering, 2018, 19: 14. [百度学术]
SUTTAPHAKDEE P, DULSANG N, LORWANISHPAISARN N, et al. Optimizing mix proportion and properties of lightweight concrete incorporated phase change material paraffin/recycled concrete block composite[J]. Construction & Building Materials, 2016, 127: 475. [百度学术]
HANIF A, DIAO S, LU Z, et al. Green lightweight cementitious composite incorporating aerogels and fly ash cenospheres – mechanical and thermal insulating properties[J]. Construction and Building Materials, 2016, 116: 422. [百度学术]
WANG W, LIN Z, LIU Y, et al. Mechanical properties and stress–strain relationship in axial compression for concrete with added glazed hollow beads and construction waste[J]. Construction & Building Materials, 2014, 71: 425. [百度学术]
PAVLU T, FORTOVA K, DIVIS J, et al. The utilization of recycled masonry aggregate and recycled EPS for concrete blocks for mortarless masonry[J]. Materials, 2019, 12(12):1923. [百度学术]
GUO Y, LIU Y, WANG W, et al. A study on heat transfer performance of recycled aggregate thermal insulation concrete[J]. Journal of Building Engineering, 2020, 32: 101797. [百度学术]