摘要
扩展键基近场动力学模型解决了经典模型中固定泊松比的限制问题,但是仅限应用于小变形情况下的模拟。提出了一种计算键变形的实现方法,利用有限变形理论中的描述使模型能够处理几何非线性问题。 通过最小二乘拟合得到物质点的局部位移场,再对位移函数求导得到局部域的变形梯度张量。固体的旋转与拉伸通过对变形梯度张量的极分解分离,从而将扩展键的变形部分从总体位移中提取。随后,通过对变形系统的各个键力进行积分,从而获得系统大变形的正确预测结果。最后,开展了几个基准测试,与非线性有限元结果进行对比并验证了所提出模型的有效性和精确性。
关键词
传统的基于经典连续介质力学的数值方法,如有限元法,能够通过迭代求解线性方程组较好地处理线性连续问题。然而在处理非连续问题时,由于难以定义非连续界面的应力导数,所以这类方法的数学模型在裂纹开展处存在一定的缺陷。为了解决这个问题,学者们提出了多种替代性的数值方法,其中近场动力学方法因其非局部的键力描
在原始的键基近场动力学公
Zhu
对于细长结构或薄壁结构,Diyaroglu
对于某种数值方法,将其从小变形预测延伸至大变形分析,是对其应用范围的重要扩展。它需要考虑结构的几何非线性特性,这也是众多工程应用中需要解决的关键问题。因此学者们发展了多种数值方法,如无网格方
本文主要考虑几何非线性影响,旨在将扩展键基近场动力学模型应用于大变形问题。考虑到连续体的变形构型与未变形构型存在显著差异,采用变形梯度张量来表示从初始构型到当前构型的映射。变形梯度张量可以表示为位移场相对于初始坐标的导数,因此利用Li
在经典近场动力学模型中,局部平衡方程被描述为力密度函数的积分,其中属于彼此近场域的2个物质点沿着连接键的方向相互作用,如
(1) |
式中:为材料密度;为加速度向量;为体力密度;为物质点所占体积。

图1 物质点分布以及近场域示意
Fig. 1 Material distribution and definition of horizon
取2个位置不同且相互作用的物质点,和分别为其位置坐标,则其相对位置向量可以定义为
(2) |
假设两物质点在时刻时分别产生了位移以及,那么这两点的相对位移向量可以写成
(3) |
局部键本构关系可以描述为
(4) |
式中:为键刚度张量。文献[
(5) |
式中:,表示键方向向量;和分别表示键在法向以及切向方向的刚度,可以直接由材料的基本参数求得(杨氏模量和泊松比)。近场域H的大小由来表示。
在三维模型中,有
(6) |
对于平面应力问题,有
(7) |
对于平面应变问题,有
(8) |
使用标记未变形构型中某一位置,表示运动变形后构型中对应位置,变形梯度张量是变形后向量的每个分量对于未变形向量的每个分量的导数
(9) |
式中:为克罗内克符号。
极分解定理表明,任何二阶张量都可以分解为纯旋转和对称张量的乘积,因此固体的旋转和变形可以分解为
(10) |
式中:和S分别为旋转张量以及右伸长张量。
经过刚性旋转后的键相对位置向量可表示为
(11) |
由几何视图(
(12) |

图2 键位移、旋转、变形示意
Fig. 2 Bond displacement, rotation and deformation
(13) |
(14) |
式中:为键伸长率;为键剪切变形大小;,为垂直于的单位方向向量。
局部位移函数使用局部的物质点位移来拟合,此位移函数可近似为一多元线性函数。
(15) |
式中:为系数矩阵的组合;为刚体位移。从而有
(16) |
应用最小二乘法最小化每个位移分量的残差总和,得到
(17) |
式中:为系数组成的矩阵;为局部物质点位移组成的矩阵;T为
(18) |
式中:为物质点坐标组成的矩
当得到变形梯度张量后,便可以求得和。在大变形理论中,与右柯西-格林张量的关系为
(19) |
对于二维模型,当得到的特征值和后,可以定义
(20) |
使用矩阵特征值的特性,和为矩阵的特征值。
(21) |
由于为正定对称矩阵,所以,。
(22) |
根据文献[
(23) |
转动张量R通过
(24) |
为了描述材料损伤,标量函数被引入了力密度-位移函数关系。
(25) |
式中:和分别为键伸长及键剪切的临界值。将能量释放率分解为径向部分以及切向部分,有
(26) |
式中:为键与球坐标系轴的夹角;为键在Oxy平面的投影与x轴的夹角。可得
(27) |
式中:和分别为型能量释放率和型能量释放率。物质点处的损伤值可按
(28) |
利用动态松弛法模拟结构的准静态力学行为。对于整个系统,引入自适应阻尼系数结合虚拟对角质量矩阵[
(29) |
利用中心差分显式积分,相邻迭代步间的位移关系可以写成
(30) |
其中初始迭代步的速度向量为
(31) |
随后迭代步的速度向量通过
(32) |
对角质量矩阵中的主对角元素必须满足
(33) |
式中:可采用文献[
每一迭代步的自适应阻尼系数取决于
cn=2 | (34) |
式中:为对角局部刚度矩阵,通过
(35) |
需注意,如果遇到速度为零的情况,便设为零。
进行相关基准测试以验证所提出的XPD模型在大变形分析中的可靠性。3.1节分析承受集中荷载的悬臂梁,这是一个经典的基准问题。3.2节引入了一个L形板来测试XPD大变形预测的有效性。最后将大变形XPD结果与大变形有限元结果进行对比,以验证所建立模型的准确性。假设模型为平面应力情况,单位厚度。
悬臂梁的几何形状、边界条件和加载条件如

图3 悬臂梁的几何尺寸与边界条件(单位:m)
Fig. 3 Cantilever beam: geometry and boundary conditions (unit: m)

图4 物质点分布与变形示意
Fig. 4 Material point distribution and its deformation

图5 使用小变形理论预测的方向位移云图
Fig. 5 Contour maps predicted by using small deformation theory

图6 使用大变形理论预测的方向位移云图
Fig. 6 Contour maps predicted by using large deformation theory

图7 悬臂梁的挠度-荷载分析
Fig. 7 Cantilever beam: deflection-load analysis
考虑几何非线性和材料损伤行为的共同影响。L形板在其右上侧面承受竖直载荷,几何尺寸和边界条件如

图8 L 形板的几何尺寸与边界条件(单位:m)
Fig. 8 L-shaped plate: geometry and boundary conditions (unit: m)
记录kN时的位移分量的云图,

图9 L 形板的使用大变形理论预测的方向位移云图
Fig. 9 L-shaped plate: displacement distribution predicted by using large deformation theory

图10 L形板的上表面位移
Fig. 10 L-shaped plate: x2-direction displacement on upper surface

图11 L形板上3个指定点的位移-荷载曲线
Fig. 11 L-shaped plate: x2-direction displacement-load curves of three specified points

图12 L形板的大变形XPD预测的损伤模式
Fig. 12 L-shaped plate: damage patterns predicted by large deformation XPD
基于扩展键基近场动力学模型提出了一种数值实现方法。通过应用变形梯度张量在新的求解框架中很好地解决了几何非线性问题。在几组基准测试研究中,通过新框架模拟结果与大变形有限元结果之间的对比验证了模型的有效性和准确性。同时,该模型还能很好地模拟伴随大变形的材料非线性行为,包括裂纹扩展等。与小变形模型相比,除了每一步需要更新粒子的位置外,并没有增加额外的计算消耗。鉴于其预测变形的能力以及编码简单的优势,扩展键基近场动力学模型有望成为解决工程实践中复杂问题的有效工具。
作者贡献声明
朱其志:提供研究平台以及理论基础,进行研究指导以及写作指导。
李惟简:进行方法创新以及程序实现。
尤 涛:提供编程帮助。
曹亚军:提供理论及创新思路。
参考文献
SILLING S. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of the Mechanics Physics of Solids, 2000, 48(1) : 175. [百度学术]
SILLING S, ASKARI E. A meshfree method based on the peridynamic model of solid mechanics[J]. Computers and Structures, 2005, 83(17) : 1526. [百度学术]
SILLING S, LEHOUCQ R. Peridynamic theory of solid mechanics[J]. Advances in Applied Mechanics, 2010, 44: 73. [百度学术]
ASKARI E, BOBARU F, LEHOUCQ R, et al. Peridynamics for multiscale materials modeling[J]. Journal of Physics: Conference Series, 2008, 125: 012078. [百度学术]
MADENCI E, OTERKUS E. Peridynamic theory and its applications[M]. New York: Springer, 2014. [百度学术]
TONG Y, SHEN W, SHAO J, et al. A new bond model in peridynamics theory for progressive failure in cohesive brittle materials[J]. Engineering Fracture Mechanics, 2020, 223: 106767. [百度学术]
ZHANG H, QIAO P. Virtual crack closure technique in peridynamic theory[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 372: 113318. [百度学术]
WANG Y, ZHOU X, SHOU Y. The modeling of crack propagation and coalescence in rocks under uniaxial compression using the novel conjugated bond-based peridynamics[J]. International Journal of Mechanical Sciences, 2017, 128/129: 614. [百度学术]
SILLING S, EPTON M, WECKNER O, et al. Peridynamic states and constitutive modeling[J]. Journal of Elasticity, 2007, 88(2): 151. [百度学术]
ZHOU X P, WANG Y T, SHOU Y D, et al. A novel conjugated bond linear elastic model in bond-based peridynamics for fracture problems under dynamic loads[J]. Engineering Fracture Mechanics, 2018,188: 151. [百度学术]
WANG Y T, ZHOU X P, WANG Y, et al. A 3-D conjugated bond-pair-based peridynamic formulation for initiation and propagation of cracks in brittle solids[J]. International Journal of Solids and Structures, 2018, 134: 89. [百度学术]
HU Y L, MADENCI E. Bond-based peridynamics with an arbitrary poisson’s ratio[C]// 57th Structures, Structural Dynamics, and Materials Conference. San Diego:AIAA/ASCE/AHS/ASC, 2016:4–8. [百度学术]
CHOWDHURY S, RAHAMAN M, ROY D, et al. A micropolar peridynamic theory in linear elasticity[J]. International Journal of Solids and Structures, 2015, 59: 171. [百度学术]
MADENCI E, OTERKUS S. Ordinary state-based peridynamics for plastic deformation according to von mises yield criteria with isotropic hardening[J]. Journal of the Mechanics and Physics of Solids, 2016, 86: 192. [百度学术]
PASHAZAD H, KHARAZI M. A peridynamic plastic model based on von mises criteria with isotropic, kinematic and mixed hardenings under cyclic loading[J]. International Journal of Mechanical Sciences, 2019, 156: 182. [百度学术]
LIU Z, BIE Y, CUI Z, et al. Ordinary state-based peridynamics for nonlinear hardening plastic materials’ deformation and its fracture process[J]. Engineering Fracture Mechanics, 2020, 223: 106782. [百度学术]
KAZEMI S R. Plastic deformation due to high-velocity impact using ordinary state-based peridynamic theory[J]. International Journal of Impact Engineering, 2020, 137: 103470. [百度学术]
AHMADI M, HOSSEINI-TOUDESHKY H, SADIGHI M. Peridynamic micromechanical modeling of plastic deformation and progressive damage prediction in dual-phase materials[J]. Engineering Fracture Mechanics, 2020, 235: 107179. [百度学术]
NGUYEN C T, OTERKUS S. Ordinary state-based peridynamic model for geometrically nonlinear analysis[J]. Engineering Fracture Mechanics, 2020, 224: 106750. [百度学术]
NGUYEN C T, OTERKUS S. Ordinary state-based peridynamics for geometrically nonlinear analysis of plates[J]. Theoretical and Applied Fracture Mechanics, 2021, 112: 102877. [百度学术]
ZHU Q Z, NI T. Peridynamic formulations enriched with bond rotation effects[J]. International Journal of Engineering Science, 2017, 121: 118. [百度学术]
LI W J, ZHU Q Z, NI T. A local strain-based implementation strategy for the extended peridynamic model with bond rotation[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 358: 112625. [百度学术]
DIYAROGLU C, OTERKUS E, OTERKUS S, et al. Peridynamics for bending of beams and plates with transverse shear deformation[J]. International Journal of Solids and Structures, 2015, 69/70: 152. [百度学术]
O’GRADY J, FOSTER J. Peridynamic plates and flat shells: A non-ordinary, state-based model[J]. International Journal of Solids and Structures, 2014, 51(25): 4572. [百度学术]
NGUYEN C T, OTERKUS S. Peridynamics for the thermomechanical behavior of shell structures[J]. Engineering Fracture Mechanics, 2019, 219: 106623. [百度学术]
NGUYEN C T, OTERKUS S. Investigating the effect of brittle crack propagation on the strength of ship structures by using peridynamics[J]. Ocean Engineering, 2020, 209: 107472. [百度学术]
LIEW K, NG T, WU Y. Meshfree method for large deformation analysis-a reproducing kernel particle approach[J]. Engineering Structures, 2002, 24(5): 543. [百度学术]
GU Y, WANG Q, LAM K. A meshless local kriging method for large deformation analyses[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(9): 1673. [百度学术]
GU Y. An adaptive local meshfree updated lagrangian approach for large deformation analysis of metal forming[J]. Advanced Materials Research, 2010, 97-101: 2664. [百度学术]
ZHAO G. Development of the distinct lattice spring model for large deformation analyses[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38: 1078. [百度学术]
XIE H P. Analysis of nonlinear large deformation problems by boundary element method[J]. Applied Mathematics and Mechanics, 1988, 9: 1153. [百度学术]
CHANDRA A, MUKHERJEE S. Boundary element formulations for large strain-large deformation problems of viscoplasticity[J]. International Journal of Solids and Structures, 1984, 20(1): 41. [百度学术]
HU Y, RANDOLPH M F. A practical numerical approach for large deformation problems in soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 22(5): 327. [百度学术]
NAZEM M, CARTER J P, SHENG D, et al. Alternative stress-integration schemes for large-deformation problems of solid mechanics[J]. Finite Elements in Analysis and Design, 2009, 45(12): 934. [百度学术]
ALSAFADIE R, HJIAJ M, BATTINI J M. Corotational mixed finite element formulation for thin-walled beams with generic cross-section[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(49): 3197. [百度学术]
MORESI L, DUFOUR F, MUHLHAUS H B. A lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials[J]. Journal of Computational Physics, 2003, 184(2): 476. [百度学术]
HOGER A, CARLSON D E. Determination of the stretch and rotation in the polar decomposition of the deformation gradient[J]. Quarterly of Applied Mathematics, 1984, 42(1): 113. [百度学术]
KILIC B, MADENCI E. An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory[J]. Theoretical and Applied Fracture Mechanics, 2010, 53(3): 194. [百度学术]
HESCH C, GIL A J,ORTIGOSA R,et al. A framework for polyconvex large strain phase-field methods to fracture[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 317: 649. [百度学术]