摘要
以南宁第三系泥质粉砂软岩为研究对象,开展非饱和三轴压缩蠕变试验,分析含水率对岩石蠕变特性的影响;再在既有五元件蠕变模型中,引入非线性黏塑性元件,构建泥质粉砂岩的七元件非饱和压缩蠕变模型,分析相关蠕变参数的变化规律。结果表明,随着含水率增加,泥质粉砂岩的蠕变变形和蠕变速率显著增加,且蠕变长期强度明显降低,表明水对泥质粉砂岩蠕变变形影响显著;新建七元件模型较好地拟合了非饱和泥质粉砂岩全过程蠕变曲线。
隧道等地下工程开挖施工后,洞壁围岩的蠕变变形及其对地下工程长期稳定性的影响,一直是岩土工程界高度重视的问
对此,国内外学者开展了大量有关含水率和应力对岩石蠕变变形影响的研究。Wawersi
与此同时,Zou
本文试验所用泥质粉砂岩取自南宁地铁3号线某车站暗挖隧道开挖面现场,埋深约为60 m,岩块采集时标记其原始层位与方位。试样呈青灰色,粉砂质、局部含泥质结构,厚层状构造。岩块经室内锯磨加工成直径38 mm、高76 mm标准圆柱状试件,如

图 1 泥质粉砂岩试件
Fig.1 Argillaceous siltstone specimens
本文开展了0、4.56%、8.47%和12.38%(饱和状态)4种含水率试样的蠕变试验研究。试样制备时,首先将天然状态试样在105 ℃下烘干至干燥,再将干燥样放入饱和器并在真空桶内抽真空4 h,然后用蒸馏水分别浸泡6、12 h,获取含水率为4.56%和8.47%的非饱和试样;并将天然状态试样直接抽真空4 h后,蒸馏水浸泡24 h获取饱和试样。
本研究所用试验仪器为多功能三轴试验仪(

图 2 多功能三轴试验仪
Fig.2 Multifunctional triaxial test system
为了确定蠕变试验中最大荷载值,开展了围压为1 MPa、不同含水率泥质粉砂岩的常规三轴压缩试验,获取三轴压缩峰值强度,并将峰值强度值的90%作为蠕变试验中所施加的最大荷载。蠕变试验采用分级加载方式加载,考虑到含水率对试样强度影响,避免加载应力过大造成试样破坏,轴向分11级加载。具体加载方案如
蠕变试验时,首先用橡皮膜包裹岩样,并在其两端垫放滤纸和透水石,放入三轴压力室中,调整试样中心位置以免偏心受压;然后,将三轴仪腔室充满水,再按0.6 kPa·
围压1 MPa条件下,不同含水率泥质粉砂岩轴向应变与时间关系如

图 3 泥质粉砂岩分级加载蠕变曲线
Fig.3 Creep curves of argillaceous siltstone in step loading

图 4 泥质粉砂岩单级加载蠕变曲线
Fig.4 Creep curves of argillaceous siltstone in single step loading
图
由图
上述荷载导致软化现象曾被认为是孔隙水压力增大对砂岩产生拉应力,孔隙水的流动减小岩石骨架变形阻力,结合水膜润滑降低了受压后接触侧壁之间的剪切强度,引发Rhebinder效应降低了岩石强
由

图 5 一定荷载不同含水率下泥质粉砂岩蠕变曲线
Fig.5 Creep curves of argillaceous siltstone at different water contents and a given deviatoric stress
针对含水率对岩石变形影响问题,张安斌
本文试样制备过程中,泥质粉砂岩中黏土矿物的干燥失水收缩或可产生裂隙或缺陷;同时,虽然由于饱和器限制,黏土矿物的吸水膨胀不会发生崩解,但土颗粒间水膜增厚,摩擦力减小,且含水率增大溶蚀胶结物,减弱颗粒之间的胶结等,均可造成泥质粉砂岩蠕变变形随着含水率增大而增大。
根据蠕变曲线斜率,可计算获取蠕变速率‒时间关系曲线。本文干燥试样的蠕变速率‒时间关系曲线如

图 6 轴向蠕变速率与时间关系曲线
Fig.6 Relationship between axial creep rate and creep time
恒定荷载作用下,岩石内部不断发生既有微裂隙的扩展和新裂隙的产生,导致岩石长期强度低于瞬时强度。当应力作用时间趋于无穷时,岩石所能抵抗的最低应力即为岩石的蠕变长期强度。数值上,可由试样蠕变破坏前,稳态蠕变转变为非稳态蠕变时的临界应力值确
通常情况下,岩石的长期强度可采用等时簇曲线法确定,即在同一时间所对应的应力()‒应变()曲线上,确定出各等时曲线的拐点,即蠕变由黏弹性阶段向黏塑性阶段(加速蠕变)转变的屈服极限点。根据拐点绘制屈服渐近线,对应的应力值即为岩石长期强度。根据等时簇曲线法,计算得非饱和泥质粉砂岩的蠕变长期强度如
针对未发生蠕变破坏时岩样的线性黏弹性特征,可采用五元件蠕变模型(

图7 五元件黏弹性蠕变模型
Fig.7 Five-component viscoelastic rheological model
(1) |
式中:为岩石轴向总应变;t为总蠕变时间;为瞬时弹性模量;和均为黏弹性模量;均为黏滞系数,其中为稳态蠕变阶段的蠕变速率,为蠕变趋向稳定的快慢程度。
然而,五元件模型中没有考虑塑性变形的元件,无法描述应力高于长期强度时的加速蠕变和非线性蠕变特性。为了表征泥质粉砂岩全过程蠕变特性,引入一个非线性黏塑性

图8 七元件非线性黏弹塑性蠕变模型
Fig.8 Seven-component nonlinear viscoelastoplastic creep model
当时,
(2) |
当时,
(3) |
式中:为塑性指数;n为蠕变指数,反映岩石加速蠕变速率的快慢程度。
当所施加的应力小于长期强度时,非线性黏塑性体变形为零;当所施加的应力大于长期强度时,随着减小和n增大,一定时间内蠕变变形增大,可描述岩石蠕变全过程曲线。当时,模型退化为五元件线性蠕变模型;当时,模型为可描述加速蠕变状态的非线性模型。
采用Lenvenberg‒Marquardt无条件约束优化算
由
给定应力条件下,随着含水率提高,不断减小,也呈减小趋势,这是由于瞬时弹性变形和蠕变变形不断增大的结果。随着含水率的提高,和呈减小趋势,这主要是由于岩石内部损伤逐渐增大,黏滞性增强导致黏滞系数减小。
塑性系数反映了岩石产生塑性变形的能力。随着含水率提高,逐渐减小,表明岩石产生的塑性变形越来越大。蠕变指数n反映了岩石加速蠕变速率的快慢程度。随着含水率提高,n值不断增大,表明泥质粉砂岩的加速蠕变速率不断提高。
最后,采用七元件非线性蠕变模型模拟了4种含水率试样的蠕变曲线(

图9 非饱和泥质粉砂岩七元件蠕变模型计算数据和试验数据对比
Fig.9 Comparison of creep deformation curves calculated by seven-component creep model and measured from tests for unsaturated argillaceous siltstone
本文以南宁地区不同含水率的非饱和泥质粉砂岩为研究对象,开展了三维压缩蠕变试验研究,获取了蠕变曲线并分析了数据变化规律;构建了针对非饱和泥质粉砂岩的七元件蠕变模型。结论如下:
水对泥质粉砂岩蠕变变形有显著影响。随着含水率升高,岩石产生的瞬时应变和蠕应变均不断增大。1 MPa围压下,与干燥试样相比,饱和试样的瞬时应变增大了约6倍,蠕应变增大了约10倍。同时,随着含水率升高,岩石的蠕变长期强度显著降低,饱和试样的蠕变长期强度约为干燥试样的9.1%。应力水平未达到破坏强度时,轴向蠕变速率呈现出衰减蠕变和稳态蠕变;达到破坏强度时,轴向蠕变速率呈现出衰减、稳态和加速蠕变,且蠕变速率‒时间曲线呈“U”形。
基于既有五元件线性黏弹性模型,引入非线性黏塑性元件,构建了七元件非线性黏弹塑性模型,并较好模拟了非饱和泥质粉砂岩包含加速蠕变阶段的全过程蠕变曲线。
作者贡献声明
叶为民:方案设计,理论指导,文稿修改。
王启力:试验实施,结果与理论分析,初稿撰写与修改。
罗文静:现场协调,方案讨论。
谢雄耀:方案讨论与优化,结果分析。
周 彪:现场协调,文稿修改。
参考文献
孙钧.岩石流变力学及其工程应用研究的若干进展[J]. 岩石力学与工程学报, 2007,26(6): 1081. [百度学术]
SUN Jun. Rock rheological mechanics and its advance in engineering applications [J]. Chinese Journal of Rock Mechanics and Engineering, 2007,26(6): 1081. [百度学术]
蔡美峰, 何满潮, 刘东燕. 岩石力学与工程[M]. 北京: 科学出版社, 2002. [百度学术]
CAI Meifeng, HE Manchao, LIU Dongyan. Rock mechanics and engineering [M]. Beijing: Science Press, 2002 [百度学术]
BOIDY E, BOUVAND A. Back analysis of time-dependent behavior of a test gallery in claystone [J]. Tunneling and Underground Space Technology,2002, 17(4): 415. [百度学术]
CRUDEN D M, LEUNG K. Technique for estimating the complete creep curve of a subbituminous coal under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1987, 24(4): 265. [百度学术]
WAWERSIK W R. Time-dependent rock behavior in uniaxia compression [C]//New Horizons in Rock Mechanics. University Park:A A Balkema, 1972: 85-106. [百度学术]
OKUBO S, FUKUI K, HASHIBA K. Long-term creep of water-saturated tuff under uniaxial compression [J]. International Journal of Rock Mechanics&Mining Sciences, 2010, 47(5): 839. [百度学术]
朱合华,叶斌. 饱水状态下隧道围岩蠕变力学性质的试验研究[J]. 岩石力学与工程学报, 2002, 21(12): 1791. [百度学术]
ZHU Hehua, YE Bin. Experimental study on mechanical properties of rock creep in saturation [J]. Journal of Rock Mechanics and Engineering, 2002, 21(12): 1791. [百度学术]
MARANINI E, BRIGNOLI M. Creep behaviour of a weak rock: experimental characterization [J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(1): 127. [百度学术]
FUJII Y, KIYAMA T. Circumferential strain behavior during creep tests of brittle rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(3): 323. [百度学术]
刘光廷,胡昱,陈凤岐,等. 软岩多轴流变特性及其对拱坝的影响[J]. 岩石力学与工程学报, 2004, 8: 1237. [百度学术]
LIU Guangting, HU Yu, CHEN Fengqi, et al. Rheological property of soft rock under multiaxial compression and its effect on design of arch dam[J]. Journal of Rock Mechanics and Engineering, 2004, 8: 1237. [百度学术]
GASC-BARBIER M, CHANCHOLE S. Creep behavior of bure clayey rock [J]. Applied Clay Science, 2004, 24: 449. [百度学术]
李男, 徐辉, 胡斌. 干燥与饱水状态下砂岩的剪切蠕变特性研究[J]. 岩土力学, 2012, 33(2): 439. [百度学术]
LI Nan, XU Hui, HU Bin. Shear creep characteristics of sandstone under dry and saturated states [J]. Rock and Soil Mechanics, 2012, 33(2): 439. [百度学术]
康文献,于怀昌,王玲玲,等. 三轴应力下水对粉砂质泥岩蠕变力学特性影响作用试验研究[J]. 工程地质学报,2016,24(4): 622. [百度学术]
KANG Wenxian, YU Huaichang, WANG Lingling, et al. Experimental study of influence of water on creep properties of silty mudstone under triaxial compression [J]. Journal of Engineering Geology, 2016, 24(4): 622. [百度学术]
巨能攀,黄海峰,郑达,等. 考虑含水率的红层泥岩蠕变特性及改进伯格斯模型[J]. 岩土力学,2016,37(S2): 67. [百度学术]
JU Nengpan, HUANG Haifeng, ZHENG Da, et al. Improved Burgers model for creep characteristics of red bed mudstone considering water content [J]. Rock and Soil Mechanics, 2016, 37(S2): 67. [百度学术]
于永江,张伟,张国宁,等. 富水软岩的蠕变特性实验及非线性剪切蠕变模型研究[J]. 煤炭学报,2018,43(285): 299. [百度学术]
YU Yongjiang, ZHANG Wei, ZHANG Guoning, et al. Study of nonlinear shear creep model and creep property experiment of water-rich soft rock [J]. Journal of China Coal Society, 2018, 43(285): 299. [百度学术]
于超云,唐世斌,唐春安. 含水率对红砂岩瞬时和蠕变力学性质影响的试验研究[J]. 煤炭学报,2019,44(2): 473. [百度学术]
YU Chaoyun, TANG Shibin, TANG Chunan. Experimental investigation on the effect of water content on the short-term and creep mechanical behaviors of red sandstone [J]. Journal of China Coal Society, 2019, 44(2): 473. [百度学术]
刘新喜,李盛南,周炎明,等. 高应力泥质粉砂岩蠕变特性及长期强度研究[J]. 岩石力学与工程学报, 2020, 39(1): 138. [百度学术]
LIU Xinxi, LI Shengnan, ZHOU Yanming, et al. Study on creep behavior and long-term strength of argillaceous siltstone under high stresses[J]. Journal of Rock Mechanics and Engineering, 2020, 39(1): 138. [百度学术]
ZOU L C, WANG S M, LAI X L. Creep model for unsaturated soils in sliding zone of Qianjiangping landslide [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2013, 5(2): 162. [百度学术]
郑俊,王世梅,周辉, 等. 基于伯格模型的非饱和土蠕变模型构建[J]. 长江科学院院报,2019,36(8):112. [百度学术]
ZHENG Jun, WANG Shimei, ZHOU Hui, et al. A creep model of unsaturated soil based on Burger’s model [J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(8):112. [百度学术]
LIU J, LIU W, LIU P, et al. Preliminary research on the theory and application of unsaturated red-layers embankment settlement based on rheology and consolidation theory[J]. Environmental Earth Sciences, 2016, 75(6): 503. [百度学术]
杨彩红,王永岩,李剑光,等. 含水率对岩石蠕变规律影响的试验研究[J]. 煤炭学报, 2007,32(7): 695. [百度学术]
YANG Caihong, WANG Yongyan, LI Jianguang, et al. Testing study about the effect of different water content on rock creep law [J]. Journal of China Coal Society, 2007, 32(7): 695. [百度学术]
黄小兰,杨春和,刘建军,等. 不同含水情况下的泥岩蠕变试验及其对油田套损影响研究[J]. 岩石力学与工程学报,2007,26(S2): 3477. [百度学术]
HUANG Xiaolan, YANG Chunhe, LIU Jianjun, et al. Experimental study on mudstone's creep behavior under different water contents and its effect on casing damage [J]. Chinese Journal of Rock Mechanics and Engineering, 2007,26 (S2): 3477. [百度学术]
陈卫忠,谭贤君,吕森鹏,等. 深部软岩大型三轴压缩流变试验及本构模型研究[J]. 岩石力学与工程学报,2009,28(9):1735. [百度学术]
CHEN Weizhong, TAN Xianjun, LV Senpeng, et al. Research on large-scale triaxial compressive rheological test of soft rock in depth and its constitutive model [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(9):1735. [百度学术]
陈宗基,康文法. 岩石的封闭应力、蠕变和扩容及本构方程[J]. 岩石力学与工程学报,1991,10(4): 299. [百度学术]
CHEN Zongji, KANG Wenfa. On the locked in stress, creep and dilatation of rocks, and the constitutive equations [J]. Chinese Journal of Rock Mechanics and Engineering, 1991, 10(4): 299. [百度学术]
贾海梁,王婷,项伟,等. 含水率对泥质粉砂岩物理力学性质影响的规律与机制[J]. 岩石力学与工程学报,2018,37(7): 1618. [百度学术]
JIA Hailiang, WANG Ting, XIANG Wei, et al. Influence of water content on the physical and mechanical behaviour of argillaceous siltstone and some microscopic explanations[J].Chinese Journal of Rock Mechanics and Engineering, 2018, 37(7): 1618. [百度学术]
HAWKINS A B, MCCONNELL B J. Sensitivity of sandstone strength and deformability to changes in moisture content [J]. Quarterly Journal of Engineering Geology, 1992, 25(2): 115. [百度学术]
张安斌,张艳博,刘祥鑫,等. 水对泥质粉砂岩物理力学性能影响的试验研究[J]. 煤炭科学技术,2015(8): 70. [百度学术]
ZHANG Anbin, ZHANG Yanbo, LIU Xiangxin, et al. Test study on water affected to physical mechanics performances of muddy siltstone [J]. Coal Science and Technology, 2015 (8): 70. [百度学术]
田巍巍. 干湿循环下不同风化程度泥质粉砂岩崩解特性试验研究[J]. 水资源与水工程学报,2018,29(6): 223. [百度学术]
TIAN Weiwei. Experimental study on disintegration characteristics of argillaceous siltstone with different degree of weathering under dry-wet cycling [J]. Journal of Water Resources and Water Engineering, 2018, 29(6): 223. [百度学术]
李万才,赖远超,邓辉,等. 新近系泥质粉砂岩水理特性室内试验研究[J]. 人民长江,2020,51(9): 173. [百度学术]
LI Wancai, LAI Yuanchao, DENG Hui, et al. Laboratory study on hydro-physical characteristics of neogene argillaceous siltstone [J]. Yangtze River, 2020, 51(9): 173. [百度学术]
武东生,孟陆波,李天斌,等. 灰岩三轴高温后效流变特性及长期强度研究[J]. 岩土力学, 2016,37(S1): 183. [百度学术]
WU Dongsheng, MENG Lubo, LI Tianbin, et al. Study of triaxial rheological property and long-term strength of limestone after high temperature [J]. Rock and Soil Mechanics, 2016, 37(S1): 183. [百度学术]