摘要
为了探究应变速率对炭质板岩单轴力学特性和声发射特征的影响,开展了4组不同准静态应变速率(8.50×1
炭质板岩作为地质构造运动形成的一种特殊软岩,广泛分布于我国西部地区。随着“西部大开发”战略的实施,穿越炭质板岩的隧道工程愈来愈多。这些隧道时常发生大变形灾害,如在建的木寨岭公路隧
应变速率会对岩体的基本力学参数、能量演化规律及声发射特征产生影响。刘晓辉
由于突出的各向异性特征,很多学者研究了层理倾角对炭质板岩力学特性的影
因此,开展了4组准静态应变速率(8.50×1
试验所用炭质板岩均取自渭武高速公路木寨岭隧道2#斜井,钻取试样均呈水平层理,如

图1 水平层状炭质板岩试样
Fig. 1 Samples of horizontal layered carbonaceous slate
试验加载设备为意大利Matest岩石伺服压力机,最大轴力为3 000kN,可采用荷载、位移等方式控制加载,如

图2 炭质板岩加载示意
Fig. 2 Loading diagram of carbonaceous slate
选取4种不同应变速率中的一组平行试验进行分析。

图3 不同应变速率下炭质板岩的轴向应力-轴向应变曲线
Fig. 3 Axial stress-axial strain curves of carbonaceous slate at different strain rates
压密阶段出现在加载初期,曲线呈上凹型增长。由于试样内部原生裂隙及应变速率的不同,压密阶段范围长短不一。随着应变速率的增加,同等应变下炭质板岩的应力增幅增大,压密阶段的应力-应变曲线随应变速率的增大呈向上方移动趋势(
此阶段,应力-应变曲线呈线性增长。在较低应变速率(8.50×1
采用峰值应力40%~60%区间数据计算试样的弹性模量,统计结果如

图4 不同应变速率下炭质板岩的弹性模量
Fig. 4 Elastic modulus of carbonaceous slate at different strain rates
此阶段,微裂隙逐渐发育形成宏观裂纹,试样应力-应变曲线偏离线性段,在峰值处发生破坏。

图5 不同应变速率下炭质板岩的峰值强度
Fig. 5 Peak strength of carbonaceous slate at different strain rates
岩石的变形破坏是岩石内部能量不断演化并与外界交换的结
假设单位体积炭质板岩是一个没有与外界进行热交换的封闭环境,则炭质板岩各部分能量之间关系如
(1) |
式中:为外力做功所产生的单元总应变能;为可释放的弹性应变能;为耗散应变能。在单轴压缩条件下,仅有轴向压力对炭质板岩做功,因此单位体积内的输入总能量为
(2) |
式中:为轴向应力;为轴向应变。假定弹性模量为定
(3) |
式中:为第次数据采集时的轴向应力。由式(
(4) |
采用

图6 不同应变速率下炭质板岩的总应变能密度与轴向应变关系
Fig. 6 Axial strain-total strain energy of carbonaceous slate at different strain rates

图7 不同应变速率下炭质板岩的弹性应变能密度与轴向应变关系
Fig. 7 Axial strain-elastic strain energies of carbonaceous slate at different strain rates

图8 不同应变速率下炭质板岩的耗散能密度与轴向应变
Fig. 8 Axial strain-dissipated energy of carbonaceous slate at different strain rates
振铃计数是振铃脉冲超过阈值电压的次数,能够反映岩石的损伤程度。

图9 不同应变速率下炭质板岩的振铃计数特征
Fig. 9 Acoustic emission counting characteristics of carbonaceous slate at different strain rates
随着应变速率的增加,振铃计数信号出现于加载初期,如
声发射信号中的主频率分布可以用来表征岩石的破坏形

图10 不同应变速率下炭质板岩的主频率分布特征
Fig. 10 Main frequency distribution characteristics of carbonaceous slate at different strain rates

图11 不同应变速率下炭质板岩低频带和高频带的变化特征
Fig. 11 Variation characteristics of low frequency band and high frequency band of carbonaceous slate at different strain rates
炭质板岩在不同应变速率下的破坏形式如

图12 不同应变速率下炭质板岩的破坏形式
Fig. 12 Failure modes of carbonaceous slate at different strain rates
特征应力(闭合应力σcc、起裂应力σci、扩容应力σcd)是表征岩石裂纹形成、发展、贯通的重要指标,是描述岩石渐进性破坏过程的核心指
假设裂纹闭合点的应力、应变分别为和,单位体积内输入的总能量为。在线弹性阶段,满足
(5) |
(6) |
(7) |
由
(8) |
由

图13 1.7×1
Fig. 13 Evolution of strain energy of carbonaceous slate at a strain rate of 1.7×1
裂隙闭合阶段Ⅰ:此阶段试样内原生微裂纹逐渐闭合;总应变能的输入一部分转化为弹性能,一部分用于原生裂纹的闭合,从而导致耗散能的增加。该阶段结束的特征应力为裂纹闭合应力[
线弹性阶段Ⅱ:此阶段原生裂纹稳定扩展,总应变能密度及弹性应变能密度均呈抛物线型增长,耗散能密度曲线与横坐标平行,压力机对试样做功均转化为弹性应变能。该阶段结束的特征应力为扩容应力[
裂纹扩展阶段Ⅲ:此阶段裂纹出现不稳定增长,逐渐形成宏观裂纹,耗散能再次增加,且增加速率变快。
在单轴压缩过程中,横向应变对裂纹的扩展较为敏感,尤其在应力-应变的线弹性阶段,仅从轴向应力-应变很难确定起裂应力点的位置。Zhao

图14 炭质板岩累计声发射撞击数
Fig. 14 Cumulative acoustic emission impact number of carbonaceous slate
采用3.1节方法确定不同应变速率下炭质板岩的特征应力,如

图15 不同应变速率下炭质板岩特征应力变化规律
Fig. 15 Characteristic stress variation of carbonaceous slate at different strain rates
在准静态应变速率范围内开展了4种不同应变速率下的单轴压缩试验,分析了应变速率对炭质板岩力学响应及声发射特征的影响,探究了应变速率对炭质板岩破坏机制的影响,并提出了基于耗散能密度演化的特征应力确定方法,形成了以下结论:
(1)在单轴压缩过程中,炭质板岩在准静态应变速率范围内存在明显的应变速率效应:随应变速率的增大,峰值强度和弹性模量先增大后减小,峰值强度和弹性模量在1.70×1
(2)在单轴压缩过程中,声发射信号中低频信号占比随应变速率增加逐渐增加,高频信号占比逐渐减小,试样破坏程度愈加剧烈,且破坏形式由张拉破坏逐渐转为剪切破坏,在应变速率8.50×1
(3)炭质板岩的闭合应力、起裂应力和扩容应力与峰值应力的比值不随应变速率发生变化,基本为定值,分别约为0.37、0.55和0.74。
作者贡献声明
肖颖鸣:开展试验,数据处理及分析,图表呈现,论文撰写和返修。
乔亚飞:论文概念设计,论文指导和修改,基金提供。
李红儒:协助开展试验。
何满潮:工程现场协调,基金提供。
参考文献
陶志刚, 罗森林, 李梦楠, 等. 层状板岩隧道大变形控制参数优化数值模拟分析及现场试验[J]. 岩石力学与工程学报, 2020, 39(3): 491. [百度学术]
TAO Zhigang, LUO Senlin, LI Mengnan, et al. Optimization of large deformation control parameters of layered slate tunnels based on numerical simulation and field test [J]. Chinese Journal of Rock Mechanics and Engineering,2020,39 (3): 491. [百度学术]
陈宗基. 地下巷道长期稳定性的力学问题[J]. 岩石力学与工程学报, 1982(1): 1. [百度学术]
CHEN Zongji, The mechanical problem of long - term stability of underground roadway[J]. Chinese Journal of Rock Mechanics and Engineering, 1982(1): 1. [百度学术]
田云, 陈卫忠, 田洪铭, 等.考虑软岩强度时效弱化的缓冲层让压支护设计研究[J]. 岩土力学, 2020, 41(S1): 237. [百度学术]
TIAN Yun, CHEN Weizhong, Tian Hongming, et al. Study on design of buffer layer yielding support considering time-effect weakening of soft rock strength[J]. Rock and Soil Mechanics, 2020, 41(S1): 237. [百度学术]
刘俊新, 张可, 刘伟, 等.不同围压及应变速率下页岩变形及破损特性试验研究[J]. 岩土力学, 2017, 38(S1): 43. [百度学术]
LIU Junxin, ZHANG Ke, LIU Wei, et al. Experimental study of mechanical behaviours of shale under different confining pressures and different strain rates[J]. Rock and Soil Mechanics, 2017, 38(S1): 43. [百度学术]
刘晓辉, 郝齐钧, 吴世勇, 等. 准静态应变率下的煤岩非线性力学特性[J]. 煤炭学报, 2019,44(5): 1437. [百度学术]
LIU Xiaohui, HAO Qijun, WU Shiyong, et al. Nonlinear mechanical properties of coal rock under quasi-static strain rate[J]. Journal of China Coal Society, 2019, 44(5): 1437. [百度学术]
刘晓辉, 郝齐钧, 胡安奎, 等. 准静态应变率下单轴煤岩特征应力确定方法研究[J]. 岩石力学与工程学报, 2020, 39(10): 2038. [百度学术]
LIU Xiaohui, HAO Qijun, HU Ankui, et al. Study on determination of uniaxial characteristic stress of coal rock under quasi-static strain rate[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(10): 2038. [百度学术]
李海涛. 加载速率效应影响下煤的冲击特性评价方法及应用[D]. 北京:中国矿业大学(北京),2014. [百度学术]
LI Haitao. Evaluation method and application of impact characteristics of coal under the influence of loading rate effect[D]. Beijing: China University of Mining and Technology(Beijing), 2014. [百度学术]
王晓东, 王坤. 加载速率效应对花岗岩破裂的力学性能及能量转化机制的影响[J]. 煤矿安全, 2020, 51(4): 31. [百度学术]
WANG Xiaodong, WANG Kun. Effect of loading rate on mechanical properties and energy conversion mechanism of granite fracture[J]. Safety in Coal Mines, 2020, 51(4): 31. [百度学术]
杨仕教, 曾晟, 王和龙.加载速率对石灰岩力学效应的试验研究[J]. 岩土工程学报, 2005(7): 786. [百度学术]
YANG Shijiao, ZENG Sheng, WANG Helong. Experimental analysis on mechanical effects of loading rates on limestone[J]. Chinese Journal of Geotechnical Engineering, 2005(7): 786. [百度学术]
尹小涛, 葛修润, 李春光, 等.加载速率对岩石材料力学行为的影响[J]. 岩石力学与工程学报, 2010, 29(S1): 2610. [百度学术]
YIN Xiaotao, GE Xiurun, LI Chunguang, et al. Influence of loading rates on mechanical rates on mechanical behaviors of rock materials[J]. Chinese Journal of Rock Mechanics and Engineering,2010, 29(S1): 2610. [百度学术]
LIU X, ZHOU L, LI X, et al. Experimental study on the effect of strain rate on rock acoustic emission characteristics[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 133: 104420. [百度学术]
LI H R, QIAO Y F, SHEN X R, et al. Effect of water on mechanical behavior and acoustic emission response of sandstone during loading process: phenomenon and mechanism[J]. Engineering Geology, 2021, 294:106386. [百度学术]
姜德义, 陈结, 任松, 等. 盐岩单轴应变率效应与声发射特征试验研究[J]. 岩石力学与工程学报, 2012, 31(2): 326. [百度学术]
JIAN Deyi, CHEN Jie, REN Song, et al. Experimental study of strain rate effect and acoustic emission characteristics of salt rock under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 326. [百度学术]
杨文君, 谢强, 班宇鑫, 等. 变加载速率砂岩声发射特征及损伤本构模型[J]. 地下空间与工程学报, 2021, 17(1): 71. [百度学术]
YANG Wenjun, XIE Qiang, BAN Yuxin, et al. The acoustic emission characteristics and damage constitutive model of sandstone under variable loading rates[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(1): 71. [百度学术]
刘运思, 傅鹤林, 伍毅敏, 等.横观各向同性岩石弹性参数及抗压强度的试验研究[J]. 中南大学学报(自然科学版), 2013, 44(8): 3398. [百度学术]
LIU Yunsi, FU Helin, WU Yimin, et al. Experimental study of elastic parameters and compressive strength for transversely isotropic rocks[J]. Journal of Central South University (Science and Technology), 2013, 44(8): 3398. [百度学术]
王永刚. 炭质板岩横观各向同性蠕变模型与应用研究[D]. 上海:同济大学,2015. [百度学术]
WANG Yonggang. Transversely isotropic creep model of carbonaceous slate and application research[D]. Shanghai: Tongji University, 2015. [百度学术]
李二强, 张洪昌, 张龙飞, 等. 不同层理倾角炭质板岩巴西劈裂试验及数值研究[J]. 岩土力学, 2020, 41(9): 2869. [百度学术]
LI Erqiang, ZHANG Hongchang, ZHANG Longfei, et al. Investigation on Brazilian tests and simulations of carbonaceous slate with different bedding angles[J]. Rock and Soil Mechanics, 2020, 41(9): 2869. [百度学术]
中华人民共和国水利部. 水利水电工程岩石试验规程: SL 264-2001 [S]. 北京: 中国水利水电出版社, 2001. [百度学术]
Ministry of Water Resources of the People’s Republic of China. Rock test regulations for water conservancy and hydropower engineering: SL 264-2001 [S]. Beijing: China Water Resources and Hydropower Press, 2001. [百度学术]
尤明庆, 华安增. 岩石试样破坏过程的能量分析[J]. 岩石力学与工程学报, 2002(6): 778. [百度学术]
YOU Mingqing, HUA Anzeng. Energy analysis of failure process of rock specimens[J]. Chinese Journal of Rock Mechanics and Engineering, 2002(6): 778. [百度学术]
谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17): 3003. [百度学术]
XIE Heping,JU Yang,LI Liyun.Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003 [百度学术]
柳万里, 晏鄂川, 戴航, 等. 巴东组泥岩水作用的特征强度及其能量演化规律研究[J]. 岩石力学与工程学报, 2020, 39(2): 311. [百度学术]
LIU Wanli, YAN Echuan, DAI Hang, et al. Study on characteristic strength and energy evolution law of Badong formation mudstone under water effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(2): 311. [百度学术]
CARPINTERI A, CORRADO M, LACIDOGNA G. Heterogeneous materials in compression: Correlations between absorbed, released and acoustic emission energies[J]. Engineering Failure Analysis, 2013, 33:236. [百度学术]
KORDATOS E Z, AGGELIS D G, MATIKAS T E. Monitoring mechanical damage in structural materials using complimentary NDE techniques based on thermography and acoustic emission[J]. Composites Part B Engineering, 2012, 43(6):2676 [百度学术]
周辉, 孟凡震, 卢景景, 等. 硬岩裂纹起裂强度和损伤强度取值方法探讨[J]. 岩土力学, 2014, 35(4): 913. [百度学术]
ZHOU Hui, MENG Fanzhen, LU Jingjing, et al. Discussion on the methods for determining the value of crack initiation strength and damage strength of hard rock[J]. Rock and Soil Mechanics, 2014, 35(4): 913. [百度学术]
EBERHARDT E D, STEAD D, STIMPSON B, et al. Identifying crack initiation and propagation thresholds in brittle rock[J]. Canadian Geotechnical Journal, 1998, 35(2): 222. [百度学术]
MARTIN C D. The strength of massive Lac du Bonnet granite around underground openings [D]. Winnipeg: Department of Civil and Geological Engineering University of Manitoba, 1993. [百度学术]
MARTIN C D,CHANDLER N A. The progressive fracture of Lac du Bonnet granite[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1994, 31(6): 643. [百度学术]
侯志强, 王宇, 刘冬桥, 等. 层状大理岩破裂过程力学特性与能量演化各向异性研究[J]. 采矿与安全工程学报, 2019, 36(4): 794. [百度学术]
HOU Zhiqiang, WANG Yu, LIU Dongqiao, et al. Investigation of the anisotropic mechanical behaviors and energy evolution during uniaxial deformation of interbedded marble[[J]. Journal of Mining and Safety Engineering, 2019, 36(4):794. [百度学术]
赵奎, 冉珊瑚, 曾鹏, 等. 含水率对红砂岩特征应力及声发射特性的影响[J]. 岩土力学, 2021(4): 1. [百度学术]
ZHAO Kui, RAN Sanhu, ZENG Peng, et al. Effect of moisture content on characteristic stress and acoustic emission characteristics of red sandsone[J]. Rock and Soil Mechanics, 2021(4): 1. [百度学术]
ZHAO X, CAI M, WANG J. Damage stress and acoustic emission characteristics of the Beishan granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 64: 258. [百度学术]