摘要
以一台面向混合动力开发的米勒循环发动机为研究对象,建立了基于130°包角进气凸轮轴的一维流体动力学模型。采用该模型仿真分析了进气门开启时刻(IVO)、排气门关闭时刻(EVC)独立调节、联合调节下米勒循环对发动机性能的影响。结果表明:随着米勒循环加深,低负荷下,进气道废气重吸收质量增加,充量系数降低,泵气损失(PMEP)减小,比油耗(BSFC)降低;中负荷下,充量系数增大,泵气损失显著减小,50%累积放热率的曲轴转角(CA50)减小,比油耗降低;高负荷下,比油耗激增。进排气门联合调节可进一步改善发动机的性能,最佳油耗点的热效率提高了0.43%。
汽车是能耗大
通过控制气门开闭时刻,米勒循环将发动机膨胀比与压缩比解耦,在降低发动机有效压缩比的同时维持膨胀比不变,从而提高发动机热效率,改善燃油经济
为提高混合动力汽车的整车能源效率,混合动力汽车多采用米勒循环发动
以一台面向混合动力系统开发的缸内直喷增压汽油机为研究对象,基于试验数据标定后的一维流体动力学模型,采用130°包角进气凸轮轴,在进气门开启时刻(inlet valve opening,IVO)340°曲轴转角下,分析转速为3 000 r·mi
研究用发动机为一台压缩比11.5、排量1.5 L、额定功率124 kW、面向混合动力开发的直列四缸增压直喷汽油机,主要技术参数如
基于研究用发动机,使用GT-Power建立了包含燃烧室、进气、排气以及涡轮增压器等模块的一维流体动力学模型。模型中使用SITurb子模型分析米勒循环的影响。与SIWiebe模型相比,SITurb模型可更准确地计算几何压缩比、空燃比、可变气门正时(variable valve timing,VVT)、点火正时等参数对缸内燃烧放热率的影响。建立的一维流体动力学模型如

图1 一维流体动力学模型
Fig.1 One-dimensional hydrodynamic model
米勒循环发动机的压缩行程开始于进气门关闭时刻(inlet valve closing,IVC),有效压缩比计算式如下所
(1) |
式中:为进气门关闭时刻对应的气缸总容积;为燃烧室容积。
米勒循环发动机有效膨胀比计算式如下所
(2) |
式中:为排气门开启时刻(exhaust valve opening,EVO)对应的气缸总容积。
使用膨胀压缩比描述米勒循环强度。的计算式如下所
(3) |
仿真工况的转速为3 000 r·mi
仿真过程中,考虑到发动机采用固定130°包角进气凸轮轴和150°包角排气凸轮轴,3个工况的IVO、EVC调节方案如
基于发动机台架试验的缸压曲线和油耗数据,标定建立的一维模型。

图2 缸内压力仿真结果与试验结果对比
Fig.2 Comparison of cylinder pressure between test data and simulation results
一般认为,发动机的最低油耗出现在轻微爆震边缘或者CA50为8°CA左
进排气质量流量是影响充量系数的关键因素之

图3 米勒循环对单气道质量流量的影响
Fig.3 Effect of Miller cycle on single airway mass flow
由
转速为3 000 r·mi

图4 米勒循环对充量系数的影响
Fig.4 Effect of Miller cycle on volumetric coefficiency
从

图5 米勒循环对有效压缩比及点火正时的影响
Fig.5 Effect of Miller cycle on effective compression ratio and ignition timing
从

图6 米勒循环对CA50的影响
Fig.6 Effect of Miller cycle on CA50

图7 米勒循环对缸内压力的影响
Fig.7 Effect of Miller cycle on cylinder pressure

图8 米勒循环对泵气损失的影响
Fig.8 Effect of Miller cycle on PMEP
从
发动机油耗的影响因素包括燃烧效率、燃烧放热等容度、冷却损失、泵气损失、摩擦损失

图9 米勒循环对比油耗和热效率的影响
Fig.9 Effect of Miller cycle on BSFC and thermal efficiency
由
IVO变化对有效压缩比的影响显
从

图10 IVO、EVC联合调节对有效压缩比和爆震指数的影响
Fig.10 Effect of combined regulation of IVO and EVC on effective compression ratio and knock index
从

图11 IVO、EVC联合调节对充量系数、泵气损失、CA50和Pmax的影响
Fig.11 Effect of combined regulation of IVO and EVC on volumetric coefficient, PMEP, CA50 and Pmax
IVO、EVC联合调节时,发动机的比油耗变化规律如

图12 IVO、EVC联合调节对比油耗的影响
Fig.12 Effect of combined regulation of IVO and EVC on BSFC
(1) IVO、EVC独立调节和联合调节能够实现米勒循环并改变米勒循环强度,与EVC相比IVO对米勒循环的影响较大。
(2) 低负荷工况下,IVO的提前导致有效压缩比减小,进气道质量流量峰值增大,充量系数增加,泵气损失减小,最佳点火正时提前,缸内最大爆发压力略有降低,比油耗降低,热效率升高;EVC的推迟会强化废气回流现象,充量系数减小,泵气损失增大,最佳点火正时、CA50变化不明显,缸内最大爆发压力增大,比油耗增加,热效率降低。
(3) 中、高负荷工况下,IVO的提前可使有效压缩比减小、废气重吸收效应减弱或消失,进气质量流量增加,充量系数增大,最佳点火正时推迟,CA50减小,缸内最大爆发压力增大,对应的曲轴转角提前,中负荷工况下泵气损失减少、比油耗先降低后增大,高负荷工况下泵气损失增大,比油耗增大;EVC的推迟对最佳点火正时和CA50的影响相对较小,泵气损失增加,比油耗升高。
(4) IVO、EVC联合调节可进一步改善发动机的性能,适当提前IVO并提前EVC可显著降低发动机油耗,使发动机的热效率进一步增加0.43%。
作者贡献声明
胡志远:研究计划制定,论文撰写。
徐 扬:研究实施,初稿撰写。
房 亮:论文优化。
楼狄明:论文优化。
谭丕强:论文优化。
参考文献
李鹏.汽车驾驶节能技术的应用及其措施分析[J].内燃机与配件,2020(16):166. [百度学术]
LI Peng. Application of energy saving technology in automobile driving and analysis of its measures [J]. Internal Combustion Engines and Accessories, 2020(16): 166. [百度学术]
乘用车燃料消耗量限值: GB 19578―2021[S].北京:中国标准出版社,2021. [百度学术]
Fuel consumption limits for passenger cars: GB 19578―2021[S]. Beijing: China Standards Press, 2021. [百度学术]
解方喜, 钟兵, 杨国志,等. 凸轮驱动式液压可变气门机构设计及运动特性[J]. 汽车工程, 2020, 42(3):32. [百度学术]
XIE Fangxi, ZHONG Bing, YANG Guozhi, et al. Design and motion characteristics of cam driven hydraulic variable valve mechanism [J]. Automotive Engineering, 2020, 42(3): 32. [百度学术]
林承伯, 刘敬平, 唐琦军,等.一种可变压缩比机构对汽油机性能的影响[J]. 内燃机工程, 2015, 36(6):84. [百度学术]
LIN Chengbo, LIU Jingping, TANG Qijun, et al. Effect of a variable compression ratio mechanism on gasoline engine performance [J]. Internal Combustion Engine Engineering, 2015, 36(6): 84. [百度学术]
祖炳锋, 周仁杰, 徐玉梁,等.米勒循环在小型增压汽油机典型工况的应用研究[J]. 内燃机工程, 2017, 38(6):125. [百度学术]
ZU Bingfeng, ZHOU Renjie, XU Yuliang, et al. Application of Miller cycle in typical working conditions of small turbocharged gasoline engine [J]. Internal Combustion Engine Engineering, 2017, 38(6): 125. [百度学术]
周仁杰. 米勒循环在传统汽油机上的应用研究[D]. 天津:天津大学,2016. [百度学术]
ZHOU Renjie. Application research of Miller cycle on traditional gasoline engine [D]. Tianjin: Tianjin University, 2016. [百度学术]
刘子鸣.米勒循环发动机开发及关键技术研究[D]. 长春:吉林大学,2020. [百度学术]
LIU Ziming. Development and key technology research of Miller cycle engine [D]. Changchun: Jilin University, 2020. [百度学术]
范巍, 吴健, 李云龙,等.米勒循环汽油机部分负荷燃油经济性研究[J].车用发动机, 2014(2):46. [百度学术]
FAN Wei, WU Jian, LI Yunlong, et al. Study on partial load fuel economy of Miller cycle gasoline engine [J]. Automotive Engine, 2014(2): 46. [百度学术]
郝嘉田,孙柏刚.利用废气再循环与米勒循环提高氢内燃机压缩比的研究[J].内燃机工程,2021,42(5):52. [百度学术]
HAO Jiatian, SUN Baigang. Study on improving the compression ratio of hydrogen internal combustion engine by using exhaust gas recirculation and Miller cycle [J]. Internal Combustion Engine Engineering, 2021,42(5): 52. [百度学术]
郑斌, 李铁, 尹涛.米勒循环改善增压直喷汽油机热效率的机理分析:部分负荷工况分析[J]. 内燃机工程, 2016, 37(6):122. [百度学术]
ZHENG Bin, LI Tie, YIN Tao. Mechanism analysis of Miller cycle improving thermal efficiency of turbocharged direct injection gasoline engine: analysis of partial load condition [J]. Internal Combustion Engine Engineering, 2016, 37(6): 122. [百度学术]
陈虎,贾宁,刘小平,等.深度Miller循环在增压直喷汽油机上的仿真和试验[J].汽车安全与节能学报,2019,10(3):366. [百度学术]
CHEN Hu, JIA Ning, LIU Xiaoping, et al. Simulation and test of deep Miller cycle on turbocharged direct injection gasoline engine [J]. Journal of Automotive Safety and Energy Saving, 2019,10(3): 366. [百度学术]
魏枫展.基于全可变液压气门的汽油机泵气损失及米勒循环性能研究[D]. 济南:山东大学,2019. [百度学术]
WEI Fengzhan. Study on pump loss and Miller cycle performance of gasoline engine based on fully variable hydraulic valve [D]. Jinan: Shandong University, 2019. [百度学术]
吴中浪,陈韬,谢辉,等.高压缩比米勒循环汽油机气门策略优化[J].燃烧科学与技术,2019,25(4):331. [百度学术]
WU Zhonglang, CHEN Tao, XIE Hui, et al. High compression ratio Miller cycle gasoline engine valve strategy optimization[J]. Combustion Science and Technology, 2019, 25(4): 331. [百度学术]
PERCEAU M, GUIBERT P, GUILAIN S, et al. Why can Miller cycle improve the overall efficiency of gasoline engines?[C]//THIESEL 2020 Conference on Thermo- and Fluid Dynamic Processes in Direct Injection Engines. Valencia: [s.n.], 2020:1-19. [百度学术]
陈砚才, 吴威龙, 陈泓,等. Miller循环深度对缸内直喷汽油发动机性能影响的研究[J]. 汽车实用技术, 2018(24):51. [百度学术]
CHEN Yancai, WU Weilong, CHEN Hong, et al. Study on the effects of different Miller cycles on the performance for a GDI engine[J]. Automobile Applied Technology, 2018(24):51. [百度学术]
郑斌, 李铁, 尹涛. 高负荷下应用米勒循环提升高压比汽油机热效率机理研究[J]. 车用发动机, 2015(5):20. [百度学术]
ZHENG Bin, LI Tie, YIN Tao. Research on the mechanism of applying Miller cycle to improve the thermal efficiency of high-pressure gasoline engine under high load[J]. Automotive Engine, 2015(5): 20. [百度学术]
张振东, 屈卓燊, 王博,等. 米勒循环和废气再循环对涡轮增压汽油机燃烧性能的影响和优化[J]. 内燃机工程, 2020,41(5):48. [百度学术]
ZHANG Zhendong, QU Zhuoshen, WANG Bo, et al. The influence and optimization of Miller cycle and exhaust gas recirculation on the combustion performance of turbocharged gasoline[J]. Internal Combustion Engine Engineering,2020, 41(5): 48. [百度学术]
黄昭明, 沈凯, 安宗权,等. 不同压缩比米勒循环和低压废气再循环对增压直喷汽油机性能影响[J]. 内燃机工程, 2019, 40(4): 14. [百度学术]
HUANG Zhaoming, SHEN Kai, AN Zongquan, et al. The influence of Miller cycle with different compression ratios and low-pressure exhaust gas recirculation on the performance of turbocharged direct injection gasoline engines[J]. Internal Combustion Engine Engineering, 2019, 40(4): 14. [百度学术]
王元丰. 串联式混合动力APU用米勒循环发动机性能研究[D]. 天津:天津大学,2016. [百度学术]
WANG Yuanfeng. Research on Miller cycle engine performance for series hybrid APU [D]. Tianjin: Tianjin University, 2016. [百度学术]
石垒,李连豹,韦虹,等. 增程式混合动力汽车专用高热效率发动机试验研究[J]. 小型内燃机与摩托车, 2018, 47(5):72. [百度学术]
SHI Lei, LI Lianbao, WEI Hong, et al. Experimental study on high thermal efficiency engines for extended-range hybrid electric vehicles[J]. Small Internal Combustion Engines and Motorcycles, 2018, 47(5):72. [百度学术]
渠肖楠, 魏胜利, 宋志磊. 基于AVL-BOOST的米勒循环发动机性能分析研究[J]. 广西大学学报(自然科学版), 2019, 44(6):1607. [百度学术]
QU Xiaonan, WEI Shengli, SONG Zhilei. Performance analysis of Miller cycle engine based on AVL-BOOST[J]. Journal of Guangxi University (Natural Science Edition), 2019, 44(6): 1607. [百度学术]
井俊超、张勇、王永建,等. 米勒循环发动机在P2.5构型混合动力系统上的应用及研究[J]. 内燃机, 2020(6):21. [百度学术]
JING Junchao, ZHANG Yong, WANG Yongjian, et al. Application and research of Miller cycle engine in P2.5 hybrid system[J]. Internal Combustion Engines, 2020(6):21. [百度学术]
NEHER D, SCHOOL F, DEINERT M, et al. Miller/Atkinson valve timing as full load concept for a naturally aspirated cogeneration engine[R]. [S.l.]:SAE, 2015. [百度学术]
李友峰,仲怀清,郑永强,等.米勒循环结合可变涡轮增压优化柴油机性能的仿真与试验[J].船舶工程,2020,42(10):1. [百度学术]
LI Youfeng, ZHONG Huaiqing, ZHENG Yongqiang, et al. Simulation and test of Miller cycle combined with variable turbocharging to optimize diesel engine performance[J]. Ship Engineering, 2020, 42(10): 1. [百度学术]
LI Q, LIU J, FU J, et al. Comparative study on the pumping losses between continuous variable valve lift (CVVL) engine and variable valve timing (VVT) engine[J]. Applied Thermal Engineering, 2018, 137: 710. [百度学术]
梁源飞,周正群,杨如枝.米勒循环增压发动机进气道开发[J].小型内燃机与车辆技术,2020,49(1):14. [百度学术]
LIANG Yuanfei, ZHOU Zhengqun, YANG Ruzhi. Development of Miller cycle supercharged engine intake port[J]. Small Internal Combustion Engine and Vehicle Technology, 2020, 49(1): 14. [百度学术]
PAN X, ZHAO Y, LOU D, et al. Study of the Miller cycle on a turbocharged DI gasoline engine regarding fuel economy improvement at part load[J]. Energies, 2020, 13(6):1500. [百度学术]
树明亮,张振东,沈凯,等.通过LIVC实现的高膨压比循环对发动机性能的影响[J].农业装备与车辆工程,2021,59(6):79. [百度学术]
SHU Mingliang, ZHANG Zhendong, SHEN Kai, et al. The effect of the cycle of high inflation pressure ratio realized by LIVC on engine performance [J]. Agricultural Equipment and Vehicle Engineering, 2021, 59(6): 79. [百度学术]
BRAUN T, BURKHARDT T, DINGL J, et al. On-board adaptation of engine-specific valve train variability in Miller and Atkinson applications[J]. MTZ Worldwide, 2020, 81(6): 40. [百度学术]
吴威龙,林思聪,陈砚才,等.米勒增压直喷汽油机应用LPEGR的试验研究[J].小型内燃机与车辆技术,2021,50(2):1. [百度学术]
WU Weilong, LIN Sicong, CHEN Yancai, et al. Experimental research on Miller turbocharged direct injection gasoline engine using LPEGR[J]. Small Internal Combustion Engine and Vehicle Technology, 2021, 50(2): 1. [百度学术]
李云虹,杜家坤,秦博,等.压缩比及EGR对直喷米勒循环汽油机性能影响的试验研究[J].车用发动机,2020(6):19. [百度学术]
LI Yunhong, DU Jiakun, QIN Bo, et al. Experimental study on the influence of compression ratio and EGR on the performance of direct injection Miller cycle gasoline engine[J]. Automotive Engine, 2020(6): 19. [百度学术]
梁源飞,周正群,杨如枝.增压汽油机米勒循环应用研究[J].汽车实用技术,2020(13):31. [百度学术]
LIANG Yuanfei, ZHOU Zhengqun, YANG Ruzhi. Application study on Miller cycle turbocharged gasoline engine [J]. Automobile Applied Technology, 2020(13): 31. [百度学术]
开进彬,张来涛,石磊,等.增压直喷汽油机燃烧放热规律研究[J].小型内燃机与车辆技术,2015,44(3):6. [百度学术]
KAI Jinbin , ZHANG Laitao, SHI Lei, et al. Research on the combustion heat release law of turbocharged direct injection gasoline engine[J]. Small Internal Combustion Engine and Vehicle Technology, 2015, 44(3): 6. [百度学术]
王磊,张双,杜家坤,等.进一步提升增压直喷发动机米勒效应的试验研究[J].现代车用动力,2020(4):30. [百度学术]
WANG Lei, ZHANG Shuang, DU Jiakun, et al. Experimental study on further improving the Miller effect of turbocharged direct injection engines[J]. Modern Vehicle Power, 2020(4): 30. [百度学术]
LI T, GAO Y, WANG J, et al. The Miller cycle effects on improvement of fuel economy in a highly boosted, high compression ratio, direct-injection gasoline engine: EIVC vs. LIVC[J]. Energy Conversion and Management, 2014, 79: 59. [百度学术]