摘要
由于低廉的成本、简易的制备方法和优异的电化学性能,过渡金属氧化物被认为是一种有前景的碱性电解水制氢催化剂,但其形貌的电化学性能研究目前尚少。本文设计了一种多维度(一维、二维)齿轮形貌的纳米过渡金属氧化物碱性电解水制氢催化剂(NF/NCFO-g)。在1M KOH溶液、100 mA c
自工业革命以来,由于大量使用以煤、石油和天然气为代表的化石能源,导致以CO2为代表的温室气体排放量急剧上升,近年来的地球升温速率已逼近2 ℃/百
为了获得性能优越的电解水制氢催化剂,前人探索了不同维度形貌的过渡金属纳米催化剂,如零维结构的单原子催化剂,一维结构的纳米针、二维结构的纳米片和三维结构的纳米花等催化
本文利用一种水热法和高温煅烧法制备具有复合维度(一、二维)齿轮形貌的镍钴铁三元氧化物催化剂(NF/NCFO-g)。电化学分析表明,NF/NCFO-g相比于同样化学组成的一维纳米针(NF/NCFO-n)和二维纳米片(NF/NCFO-s)具有更高的催化活性。在1M KOH溶液中,当阳极电流密度为100 mA c
本实验所用药品全部为分析纯等级,其中Ni(NO3)2·6H2O、NH4F、CO(NH2)2、Fe(NO3)3·9H2O、FeCl2·6H2O、Co(NO3)2·6H2O、HCl及高纯铁粉购买于国药试剂有限公司;泡沫镍(NF,厚度1.5 mm)购买于昆山广嘉源新材料有限公司。首先,将(1×2 c
首先,分别称量2 mmol Co(NO3)2·6H2O、0.16 mmol Fe(NO3)3·9H2O、0.84 mmol Ni(NO3)2·6H2O和5 mmol 的CO(NH2)2,并将其混合在40 mL去离子水中;混合溶液超声10 min后转移至50 ml反应釜内衬,加入1片清洗过的NF,然后用钢铁外套密
0.36 mmol 高纯铁粉和0.16 mmol FeCl2·6H2O为铁源、0.84 mmol Ni(NO3)2·6H2O为镍源、1.2 mmol NH4F和3 mmol CO(NH2)2为碱源,水热反应温度为120 ℃,保温6小时,待煅烧后获得的催化剂命名为NF/NCFO-g。
以0.2 mmol Fe(NO3)3·9H2O替代1.3节所述步骤的铁
实验采用X射线衍射(X-ray diffraction(XRD))图谱对催化剂进行成分与晶体结构分析。测试设备(型号:Bruker D8 Advanced)搭载一个Rigaku 2550光源(射线类型:Cu Kα,λ=1.541 8 Å),扫描范围为10°~80°,扫描速率为0.2°/s。利用扫描电子显微镜(scanning electron microscope, SEM)对催化剂的微观形貌进行观察。电子扫描显微镜设备型号为FEI SIRION 200/INCA,工作电压为10 kV,电流为20 mA。
电化学性能测试是在电化学工作站(CHI660E,上海辰华)的三电极系统中完成,测试环境为室温常压。其中三电极分别为高纯石墨棒(99.99%)对电极,HgO/Hg为参比电极(参比电位:0.098 V),负载催化剂的电极作为阳极(Pt电极夹为固定夹具)。电解液为1 M KOH溶液。测试系统组装后,将三电极浸没在电解液中,使得阳极电极的浸入长度为1 cm。然后,检测线性伏安曲线,其扫描范围1.0~1.9 V(相对于可逆氢电位,vs. RHE),扫描速率5 mV
通过控制水热合成条件,制备出3种不同形貌的镍钴铁三元氧化物,其制备过程如

图1 不同形貌的镍钴铁氧化物(纳米针、纳米轮、纳米片)合成示意及的SEM图
Fig. 1 Schematic diagram of the synthetic routes of Ni-Co-Fe oxides with three different morphologies (nano-needles, nano-gears, and nano-sheets)
(a) 合成线路图 (b) NF/NCFO-n
(c) NF/NCFO-g (d)NF/NCFO-s

图2 种不同形貌的镍钴铁氧化物(纳米针、纳米轮、纳米片)的XRD衍射图谱
Fig.2 XRD patterns of Ni-Co-Fe oxides with three different morphologies (nano-needles, nano- gears, nano-sheets)
在1M KOH溶液中,3种不同形貌的催化剂表现出明显的电化学性能差异。当电流密度为100 mA·c

图3 三种不同形貌的镍钴铁氧化物(纳米针、纳米轮、纳米片)的电化学性能
Fig. 3 Electrochemical properties of Ni-Co-Fe oxides with three different morphologies (nano-needles, nano-gears, and nano-sheets)
(a) OER线性伏安曲线 (b) 高电流密度处的Tafel 斜率 (c) 低电流密度处的Tafel 斜率 (d)100 mA·c
图

图4 气泡模型及三种不同形貌的镍钴铁氧化物(纳米针、纳米轮、纳米片)的HER性能
Fig.4 Bubble model and HER performances of Ni-Co-Fe oxides with three different morphologies (nano-needles, nano-gears, and nano-sheets)
(a) 平面气泡模型; (b) 尖端气泡模型;
(c) HER线性伏安曲线; (d) 在高电流密度下的Tafel 斜率;
(e) 100 mA c
综上所述,为了制备具有优异电化学性能的碱性电解水制氢催化剂,赋予其尖端形貌是一种合适的技术选择。
本文通过优化水热合成条件,实现了对过渡金属三元(Ni、 Co、 Fe)氧化物催化剂形貌的调控,制备出具有复合维度(一维、二维)的纳米齿轮(NF/NCFO-g)催化剂。催化剂形貌的差异可能来源于F
NF/NCFO-g优异的电化学性能是源自一维尖端的“顶端优势”和二维结构的“氧空位”机理的协同效应。一维尖端形貌不仅可以增强电荷在尖端聚集,还能够增强亲水性,促进气泡的快速脱附和扩散。二维结构表面能够促进氧空位的形成,加速水分子的分解和O
参考文献
PATEL M, KIM S, NGUYEN T T, et al. Transparent sustainable energy platform: Closed-loop energy chain of solar-electric-hydrogen by transparent photovoltaics, photo-electro-chemical cells and fuel system[J]. Nano Energy, 2021, 90(Part A): 106496. [百度学术]
PARTIDARIO P, AGUIAR R, MARTINS P, et al. The hydrogen roadmap in the portuguese energy system developing the P2G case[J]. International Journal of Hydrogen Energy, 2020, 45(47): 25646. [百度学术]
DAWOOD F, ANDA M, SHAFIULLAH G M. Hydrogen production for energy: An overview[J]. International Journal of Hydrogen Energy, 2020, 45(7): 3847. [百度学术]
HOWARTH R W, JACOBSON M Z. How green is blue hydrogen?[J]. Energy Science & Engineering, 2021, 9(10): 1676. [百度学术]
HOSSEINI S E, WAHID M A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 850. [百度学术]
SELVAM C S, DU L, XIA B Y, et al. Reconstructed water oxidation electrocatalysts: The impact of surface dynamics on intrinsic activities[J]. Advanced Functional Materials, 2020, 31(12): 2008190. [百度学术]
ANANTHARAJ S, EDE S R, SAKTHIKUMAR K, et al. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review [J]. Acs Catal, 2016, 6(12): 8069. [百度学术]
张雪茹, 姚尚智, 肖客松, et al. 钴镍合金纳米片分级结构及其双催化电解水性能 [J]. 金属功能材料, 2019, 26(4): 23. [百度学术]
ZHANG X R, YAO S Z, XIAO K S, et al. Hierarchical NiCo alloy with bifunctional electrocatalytical water splitting properties[J]. Metallic Functional Material, 2019, 26(4): 23. [百度学术]
YUAN W J, CUI Z D, ZHU S L, et al. Structure engineering of electrodeposited NiMo films for highly efficient and durable seawater splitting[J]. Electrochim Acta, 2021, 365. DOI: 10.1016/j.electacta.2020.137366. [百度学术]
杨阳, 张胜中, 王红涛. 碱性电解水制氢关键材料研究进展 [J]. 现代化工, 2021, 41(5): 78. [百度学术]
YANG Y, ZHANG S Z, WANG H T. Research progress on key materials for alkaline water electrolysis to hydrogen[J]. Modern Chemical Industry, 2021, 41(5): 78. [百度学术]
WANG P C, JIA T, WANG B G. A critical review: 1D/2D nanostructured self-supported electrodes for electrochemical water splitting[J]. Journal of Power Sources, 2020, 474:228621. [百度学术]
LUAN C, LIU G, LIU Y, et al. Structure effects of 2D materials on alpha-Nickel Hydroxide for Oxygen evolution reaction [J]. ACS Nano, 2018, 12(4): 3875. [百度学术]
HAO Z W, WEI P K, KANG H Z, et al. Nickel cobalt oxide nanowires with iron incorporation realizing a promising electrocatalytic oxygen evolution reaction[J]. Nanotechnology, 2020, 31: 43. [百度学术]
WANG P, QI J, CHEN X, et al. Three-dimensional heterostructured NiCoP@NiMn-Layered double hydroxide arrays supported on Ni foam as a bifunctional electrocatalyst for overall water splitting[J]. Acs Appl Mater Inter, 2020, 12(4): 4385. [百度学术]
LI J, ZHENG G. one-dimensional earth-abundant nanomaterials for water-splitting electrocatalysts[J]. Adv Sci (Weinh), 2017, 4(3): 1600380. [百度学术]
JOO J, KIM T, LEE J, et al. Morphology-controlled metal sulfides and phosphides for electrochemical water splitting[J]. Adv Mater, 2019, 31(14): e1806682. [百度学术]
LI Y, SHEN W. Morphology-dependent nanocatalysis on metal oxides[J]. Science China Chemistry, 2012, 55(12): 2485. [百度学术]
LIU P, CHEN B, LIANG C W, et al. Tip-enhanced electric field: A new mechanism promoting mass transfer in Oxygen evolution reactions[J]. Adv Mater, 2021, 33(9): 2007377. [百度学术]
原荷峰,马自在,王淑敏,等. 富氧空位Co3O4纳米线的制备及其电解水性能研究[J]. 化工学报, 2020, 71(12): 5831. [百度学术]
YUAN H F, MA Z Z, WANG S M, et al. Engineering oxygen vacancy-rich Co3O4 nanowire as high-efficiency and durable bifunctional electrocatalyst for overall alkaline water splitting [J]. CIESC Journal, 2020, 71(12): 5831. [百度学术]
YANG X G, KARNBACH F, UHLEMANN M, et al. Dynamics of single hydrogen bubbles at a platinum microelectrode[J]. Langmuir, 2015, 31(29): 8184. [百度学术]