摘要
为结合直流电阻率(direct current resistivity, DCR)与射频大地电磁(radio-magnetotelluric, RMT)法反演优势,开展了二维DCR与RMT数据联合反演研究。在经典最小结构模型正则化的基础上,采用平衡算子调节两个数据间的权重,引入模糊C均值(fuzzy C-means, FCM)聚类对电阻率模型进行约束,根据数据均方根误差自动调整FCM聚类项的权重,提高了联合反演效果。通过单独反演与联合反演结果的对比,分析了两种方法的反演能力,总结了联合反演的优势。模型试算表明,DCR与RMT数据联合反演得到的电阻率模型较单独反演更接近实际模型,FCM聚类约束的应用可进一步提高联合反演的效果。
直流电阻率(direct current resistivity, DCR)与射频大地电磁(radio-magnetotelluric, RMT)是两种浅层地球物理勘探方法。DCR是较早应用的地球物理方法之一,具有较好的浅层勘探效果,理论与应用的发展均较为成
研究表明,联合反演相比单一方法可得到更准确的地下模
当前DCR与RMT的联合反演研究均采用平滑模型约束,本文为进一步改善电阻率反演效果,将模糊C均值(fuzzy C-means, FCM)聚类方法引入到反演模型约束中。FCM聚类是一种机器学习算法,其原理是根据样本点对所有类的隶属度进行样本的自动分
为提高DCR与RMT联合反演在浅层勘探中的应用效果,在经典最小结构模型正则化约
DCR与RMT单独反演的正则化目标函
(1) |
式中:为待解参数;为数据拟合项,可统一表示为,为数据协方差矩阵,为正演响应,为反演数据;为模型稳定项,可统一表示为,为模型加权矩阵,为参考模型;为模型稳定项的正则化因子。
本文研究中,DCR与RMT的反演数据分别为视电阻率和阻抗。
的标准形式可表示为
(2) |
式中:为第个数据的方差;为极小正数,确保
本文采用最小结构模型约束,可表示为
(3) |
采用最小二乘法计算非结构化网格模型粗糙
(4) |
式中:、为比例系数,通常取。
为讨论DCR与RMT的单独反演能力,设计了

图1 设计的计算模型
Fig.1 Diagram of synthetic model
块体 | 中心点坐标(x, y)/m | 长/m | 宽/m | ρ/(Ω·m) |
---|---|---|---|---|
(1) | (-135,-20) | 30 | 30 | 100 |
(2) | (-45,-30) | 30 | 30 | 10 000 |
(3) | (45,-30) | 30 | 30 | 100 |
(4) | (135,-20) | 30 | 30 | 10 000 |
采用非结构网格有限单元法进行了DCR与RMT的正演模拟,两种正演数据中各自加入5%的随机噪声,对DCR和RMT数据分别采用高斯‒牛顿

图2 DCR和RMT数据单独反演的电阻率模型对比
Fig.2 Comparison of resistivity models for DCR and RMT inversions
DCR数据反演(

图3 DCR和RMT数据单独反演的正则化因子、数据均方根误差(RMS)、模型误差变化曲线
Fig.3 Curves of regularization factor, RMS, and model object function in single inversions of DCR and RMT data
DCR与RMT单独反演结果表明,DCR反演对高、低阻体均有较好恢复能力;而RMT对低阻体具有高灵敏度,高阻体反演能力则较差。开展DCR与RMT联合反演,一方面加强DCR对低阻体的分辨率;另一方面可避免RMT反演结果遗漏高阻体的风险,实现更精确的浅地表勘探。
联合反演的目标函数形式及其优化求解与1.1节单独反演一致,中反演数据和正演响应均由DCR与RMT共同组成,,为DCR法视电阻率数据,、分别为RMT法的TE、TM模式阻抗数据;,、分别为DCR与RMT正演响应。对于联合反演,可在标准数据加权矩阵中引入平衡算子调节数据比
(5) |
式中:代表DCR与RMT方法;代表各类型数据的加权矩阵包含、;代表各类型数据的平衡算子,用于表征数据集对反演模型参数的贡献比例,由于DCR与RMT数据均只反演电阻率,因此取;代表各类型数据个数,与分别代表RMT与DCR数据个数。
对

图4 基于不同数据加权矩阵的联合反演电阻率模型对比
Fig. 4 Comparison of resistivity models for joint inversions based on different data weightings

图5 联合反演的RMSDCR、RMSRMT变化曲线
Fig. 5 RMSDCR versus RMSRMT in joint inversions
对比
对比
研究表明,在反演中引入FCM聚类约束可得到更好的地质分异信
基于FCM聚类的DCR与RMT联合反演目标函数可表示为
(6) |
式中:为FCM聚类
聚类项可表示为
(7) |
式中:为总模型单元个数;为聚类中心个数;为第个模型单元的物性值;为反演的第k个聚类中心;为第个模型单元物性值对第个聚类中心的隶属度,其中为模糊化参数,本文取;在获得岩石物理先验信息时,可引入参考聚类中心;为第个参考聚类中心的权重因子,表示第k个参考聚类中心的置信度。
基于FCM聚类的DCR与RMT联合反演目标函数可进一步表示为
(8) |
聚类项中第一项可表示为
(9) |
式中:; ; 。
采用高斯‒牛顿法优化求解
(10) |
式中:为雅可比矩阵。根据
(11) |
式中:为沿改进量的搜索步
聚类项在目标函数中的权重可直接影响聚类反演效果。理论上,在反演初期,当采用均匀模型反演时,无法施行有效的聚类,的权重过大将影响反演的正常进行;而随反演的进行,异常信息将逐渐清晰,分类特征将越来越明显,应当有较大的聚类权重。根据以上分析,设计随迭代过程自动调整值的方法为
(12) |
数据均方根误差,根据正则化理论,为确保数据不出现过拟合,反演过程中应有,则为的上界,第n+1次反演迭代的根据第n次迭代的RMS进行计算;反演初期RMS较大,则有较小值,以防止反演早期聚类约束过强而导致的不良影响。
为了分析聚类约束对联合反演效果的改进,进行了联合反演与基于FCM聚类的联合反演试算。正则化因子初始值均为10 000,后期根据数据误差以及模型误差等信息进行经验选取,迭代次数均为60次,数据加权方式均采取2.1节引入平衡因子的形式。对于聚类联合反演,取L=10、100、500、 1 000,根据

图6 不带聚类约束的联合反演电阻率模型
Fig.6 Resistivity model of joint inversion without FCM clustering

图7 不同L取值的FCM聚类联合反演电阻率模型对比
Fig.7 Resistivity models for joint inversion based on FCM at different L values

图8 不同L取值时聚类联合反演的RMS、β、φFCM的变化曲线
Fig. 8 Curves of RMS,β,φFCM at iteration of different L values based on FCM
对比
为分析反演早期聚类约束过强对联合反演的影响,对取固定值与自动选取两种情况的反演过程进行对比。L=100时反演结果最好,将该反演最后一次迭代的值5.817作为的固定值,将其反演结果与L=100自动选择时的反演结果进行对比,见

图9 β取定值5.817时的FCM聚类联合反演与L=100自动选择β的反演结果对比
Fig.9 Resistivity models for joint inversions based on FCM at two different β values (one being a fixed β value of 5.817, the other being an automatic selection value of β), and an L of 100
对比图
对比图
通过对二维DCR、RMT数据的正则化反演与基于FCM聚类模型约束的联合反演研究,取得以下成果:
(1) 对于二维DCR与RMT数据的单独反演,DCR方法在其勘探深度内对高、低阻体均较敏感,而RMT方法对低阻体分辨能力明显优于高阻体。
(2) DCR与RMT方法的联合反演较单一方法可以得到更准确的地下电阻率模型;联合反演中,DCR与RMT数据在反演中的权重对反演结果影响较大,通过平衡两个数据集在反演中的比例,可有效提高联合反演效果。
(3) FCM聚类约束可改善联合反演效果;反演初期聚类项权重过大将影响反演目标函数优化过程中的下降动力,导致最终的反演结果较差;以数据均方根误差为依据的聚类项权重因子自动选取算法适用于DCR与RMT数据的联合反演。
RMT数据受位移电流的影响,可对介电常数进行反演,后续将进行DCR与RMT数据的电阻率、介电常数联合反演研究。鉴于我国RMT方法研究处于理论研究阶段,课题组正与国外团队合作,进行RMT实测数据反演研究。
作者贡献声明
张志勇:方法提出,算法设计与代码撰写,论文撰写与修改。
易 柯:算法改进,论文撰写与修改。
谢尚平:试算,论文修改。
周 峰:方法讨论,论文修改。
郭一豪:程序改进,论文修改。
程 三:数值模拟,论文修改。
参考文献
MAILLET R. The fundamental equations of electrical prospecting[J]. Geophysics, 1947, 12(4): 529. DOI:10.1190/1.1437342. [百度学术]
COGGON J H. Electromagnetic and electrical modeling by the finite element method[J]. Geophysics, 1971, 36(1): 132. DOI:10.1190/1.1440151. [百度学术]
OLDENBURG D W. The interpretation of direct current resistivity measurements[J]. Geophysics, 1978, 43(3): 610. DOI:10.1190/1.1440840. [百度学术]
PARK S K, VAN G P. Inversion of pole‐pole data for 3-D resistivity structure beneath arrays of electrodes[J]. Geophysics, 1991, 56(7): 951. DOI:10.1190/1.1443128. [百度学术]
ZHOU B, GREENHALGH S A. Rapid 2-D/3-D crosshole resistivity imaging using the analytic sensitivity function[J]. Geophysics, 2002, 67(3): 755. DOI:10.1190/1.1484518. [百度学术]
LOKE M H, ACWORTH I, DAHLIN T. A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys[J]. Exploration Geophysics, 2003, 34(3): 182. DOI:10.1071/eg03182. [百度学术]
PLATTNER A, MAURER H R, VORLOEPER J, et al. 3-D electrical resistivity tomography using adaptive wavelet parameter grids[J]. Geophysics Journal International, 2012, 189(1): 317. DOI:10.1111/j.1365-246x.2012.05374.x. [百度学术]
吴小平, 刘洋, 王威. 基于非结构网格的电阻率三维带地形反演[J]. 地球物理学报, 2015, 58(8): 2706. DOI: 10.6038/cjg20150808. [百度学术]
WU Xiaoping, LIU Yang, WANG Wei. 3D resistivity inversion incorporating topography based on unstructured meshes[J]. Chinese Journal Geophysics, 2015, 58(8): 2706. DOI: 10.6038/cjg20150808. [百度学术]
TURBERG P, MIILLER I, FLURY F. Hydrogeological investigation of porous environments by radio magnetotelluric-resistivity (RMT-R 12~240 kHz)[J]. Journal of Applied Geophysics, 1994, 31(1/4): 133. DOI: 10.1016/0926-9851(94)90052-3. [百度学术]
PEDERSEN L, BASTANI M, DYNESIUS L. Groundwater exploration using combined controlled-source and radio-magnetotelluric techniques[J]. Geophysics, 2005, 70(1): 8. DOI: 10.1190/1.1852774. [百度学术]
ISMAIL N, SCHWARZ G, PEDERSEN L B. Investigation of groundwater resources using controlled-source radio magnetotellurics (CSRMT) in glacial deposits in Heby, Sweden[J]. Journal of Applied Geophysics, 2011, 73(1): 74, Doi:10.1016/j.jappgeo.2010.11.008. [百度学术]
TEZKAN B, ZACHER G, DAUTEL S. On the application of radio magnetotellurics to waste site exploration in Germany[C]//Symposium on the Application of Geophysics to Engineering and Environmental Problems. 1997: 825-833. DOI: 10.3997/2214-4609-pdb.204.1997_085. [百度学术]
TEZKAN B, RECHER S, HÖNIG M, et al. Joint application of radio magnetotellurics(RMT) and induced polarization(IP) to a waste site exploration[C]//Symposium on the Application of Geophysics to Engineering and Environmental Problems, 2001. DOI: 10.4133/1.2922925. [百度学术]
TEZKAN B, GEORGESCU P, FAUZI U, et al. A radio-magnetotelluric survey on an oil-contaminated area near the Brazi Refinery, Romania[J]. Geophysical Prospecting, 2005, 53(3): 311. DOI: 10.1111/j.1365-2478.2005.00475.x. [百度学术]
SHAN C, BASTANI M, MALEHMIR A, et al. Integrated 2D modeling and interpretation of geophysical and geotechnical data to delineate quick clays at a landslide site in southwest Sweden[J]. Geophysics, 2014, 79(4): 61. DOI: 10.1190/GEO2013-0201.1. [百度学术]
SHAN C, BASTANI M, MALEHMIR A, et al. Integration of controlled-source and radio magnetotellurics, electric resistivity tomography , and reflection seismics to delineate 3D structures of a quick-clay landslide site in southwest of Sweden[J]. Geophysics, 2016, 81(1): 13. DOI: 10.1190/GEO2014-0386.1. [百度学术]
WANG S, MALEHMIR A, BASTANI M. Geophysical characterization of areas prone to quick-clay landslides using radio-magnetotelluric and seismic methods[J]. Tectonophysics, 2016, 677/678: 248. DOI: 10.1016/j.tecto.2016.04.020. [百度学术]
VOZOFF K, JUPP D L B. Joint inversion of geophysical data[J]. Geophysical Journal International, 1975, 42(3): 977. DOI:10.1111/j.1365-246x.1975.tb06462.x. [百度学术]
JUPP D L B, VOZOFF K. Resolving anisotropy in layered media by joint inversion[J]. Geophysics Prospecting, 1977, 25(3): 460. DOI:10.1111/J.1365-2478.1977.TB01181.X. [百度学术]
LINES L R, SCHULTZ A K, TREITEL S. Cooperative inversion of geophysical data[J]. Geophysics, 1988, 53(1): 8. DOI:10.1190/1.1442403. [百度学术]
HABER E, OLDENBURG D. Joint inversion: a structural approach[J]. Inverse Problems, 1997, 13(1): 63. DOI: 10.1088/0266-5611/13/1/006. [百度学术]
BASTANI M, HÜBERT J, KALSCHEUER T, et al. 2D joint inversion of RMT and ERT data versus individual 3D inversion of full tensor RMT data: an example from Trecate site in Italy[J]. Geophysics, 2012, 77(4): WB233. DOI:10.1190/GEO2011-0525.1. [百度学术]
YOGESHWAR P, TEZKAN B, ISRAIL M, et al. Groundwater contamination in the Roorkee area, India: 2D joint inversion of radio magnetotelluric and direct current resistivity data[J]. Journal of Applied Geophysics, 2012, 76: 127. DOI: 10.1016/j.jappgeo.2011.11.001. [百度学术]
WANG S, KALSCHEUER T, BASTIANI M, et al. Joint inversion of lake-floor electrical resistivity tomography and boat-towed radio-magnetotelluric data illustrated on synthetic data and an application from the Äspö Hard Rock Laboratory site, Sweden[J]. Geophysical Journal International, 2018, 213(1): 511. DOI: 10.1093/gji/ggx414. [百度学术]
CANDANSAYAR M E, TEZKAN B. Two-dimensional joint inversion of radio-magnetotelluric and direct current resistivity data[J]. Geophysical Prospecting, 2008, 56(5): 737. DOI:10.1111/j.1365-2478.2008.00695.x. [百度学术]
原源, 汤井田, 任政勇, 等. 基于非结构化网格的任意复杂2D RMT有限元模拟[J]. 地球物理学报, 2015, 58(12): 4686. DOI: 10.6038/cjg20151229. [百度学术]
YUAN Yuan, TANG Jintian, REN Zhengyong, et al. Two-dimentional complicated radio-magnetotelluric finite-modeling using unstructured grids[J]. Chinese Journal of Geophysics, 2015, 58(12): 4686. DOI: 10.6038/cjg20151229. [百度学术]
ÖZYILDIRIM Ö, DEMIRCI İ, GÜNDOĞDU N Y, et al. Two dimensional joint inversion of direct current resistivity and radio-magnetotelluric data based on unstructured mesh[J]. Journal of Applied Geophysics, 2020, 172: 103885. DOI: 10.1016/j.jappgeo.2019.103885. [百度学术]
DEMIRCI İ, CANDANSAYAR M E, VAFIDIS A, et al. Two dimensional joint inversion of direct current resistivity, radio-magnetotelluric and seismic refraction data: an application from Bafra Plain, Turkey[J]. Journal of Applied Geophysics, 2017, 139: 316. DOI: 10.1016/J.JAPPGEO.2017.03.002. [百度学术]
BEZDEK J C. Pattern recognition with fuzzy objective function algorithms[M]. New York: Plenum Press, 1981. [百度学术]
HOPPNER F, KLAWONN F, KRUSE R, et al. Fuzzy cluster analysis: methods for classification, data analysis and image recognition[J]. The Journal of the Operational Research Society, 2000, 51(6): 769. DOI:10.2307/254022. [百度学术]
PAASCHE H, TRONICKE J, HOLLIGER K, et al. Integration of diverse physical-property models: subsurface zonation and petrophysical parameter estimation based on fuzzy C-means cluster analyses[J]. Geophysics, 2006, 71(3):33. DOI: 10.1190/1.2192927. [百度学术]
CARTER A, LELIÈVRE P G, FARQUHARSON C G. A study of fuzzy C-means coupling for joint inversion, using seismic tomography and gravity data test scenarios[J]. Geophysics, 2015, 80(1): W1. DOI: 10.1190/GEO2014-0056.1. [百度学术]
SUN J, LI Y. Multidomain petrophysically constrained inversion and geology differentiation using guided fuzzy C-means clustering[J]. Geophysics, 2015, 80(4): ID1. DOI: 10.1190/GEO2014-0049. [百度学术]
SUN J, LI Y. Joint inversion of multiple geophysical data using guided fuzzy C-means clustering[J]. Geophysics, 2016, 81(3): ID37. DOI: 10.1190/GEO2015-0457.1. [百度学术]
LI Y, SUN J. 3D magnetization inversion using fuzzy C-means clustering with application to geology differentiation[J]. Geophysics, 2016, 81(5): J61. DOI: 10.1190/GEO2015-0636.1. [百度学术]
ISHIZU K, GOTO T, VACHIRATIENCHAI C, et al. Two-dimensional inversion of marine DC resistivity survey using fuzzy C-means clustering constraint[C]//SEG 2017. 2017: 1204–1208, DOI:10.1190/SEGAM2017-17729696.1. [百度学术]
MAAG E, LI Y. Discrete-valued inversion of IP data using guided FCM clustering[C]//2018 SEG International Exposition and Annual Meeting. 2018: 1903–1907. DOI: 10.1190/segam2018-2998500.1. [百度学术]
MAAG E, LI Y. Discrete-valued gravity inversion using the guided fuzzy c-means clustering technique[J]. Geophysics, 2018, 83(4): G59. DOI: 10.1190/geo2017-0594.1. [百度学术]
YANG B, XU K, LIU Z. Fuzzy constrained Inversion of magnetotelluric data Using guided fuzzy C-means clustering[J]. Surveys in Geophysics, 2021, 42(1): 399. DOI:10.1007/s10712-020-09628-y. [百度学术]
SUN J, LI Y. Advances in 3D magnetization clustering inversion: numerical strategies and uncertainty analysis[C]//GEM 2019 Xi’an. International Workshop on Gravity, Electrical & Magnetic Methods and Their Applications. 2019. DOI: 10.1190/GEM2019-118.1. [百度学术]
MAAG E, LI Y. Parameter selection workflow for a discrete-valued gravity inversion with guided fuzzy C-means clustering[C]//GEM 2019. DOI: 10.1190/GEM2019-113.1. [百度学术]
OLDENBURG D W, LI Y. Inversion of induced polarization data[J]. Geophysics, 1994, 59(9): 1327. DOI:10.1190/1.1443692. [百度学术]
ZHDANOV M S. Geophysical inverse theory and regularization problems[M]. Amsterdam: Elsevier, 2002. [百度学术]
LELIEVRE P G, FARQUHARSON C G. Gradient and smoothness regularization operators for geophysical inversion on unstructured meshes[J]. Geophysical Journal International, 2013, 195(1): 330. DOI: 10.1093/gji/ggt255. [百度学术]
RODI W, MACKIE R L. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion[J]. Geophysics, 2001, 66(1): 174. DOI:10.1190/1.1444893. [百度学术]
周勇,张志勇,张大洲, 等.自适应网格直流电阻率三维反演[J]. 石油地球物理勘探, 2019, 54(5): 1174. DOI: 10.13810/j.cnki.issn.10000-7210.2019.05.026. [百度学术]
ZHOU Yong, ZHANG Zhiyong , ZHANG Dazhou, et al. Three-dimensional DC inversion based on self-adaption meshes[J]. Oil Geophysical Prospecting, 2019, 54(5): 1174. DOI: 10.13810/j.cnki.issn.10000-7210.2019.05.026. [百度学术]