摘要
提出一种在役地下结构荷载随机反演方法。采用样条函数,将结构上的未知荷载参数化为一系列插值变量;基于贝叶斯框架,融入结构变形观测数据,并构建荷载参数的后验概率分布(PDF);引入高效采样算法DREAM(differential evolution adaptive metropolis)实现对未知荷载的完全贝叶斯估计。实际案例结果表明:传统确定性反演方法表现出解不稳定的“病态反演”问题,而本方法的荷载期望值则与实测结果吻合较好;本方法得到了未知荷载的完整后验分布,体现出处理反演结果不唯一的优势。
识别荷载状态是对服役结构进行健康状态评估与行为预测的重要基础,如对在役结构进行数字建模、内力估算或残余承载力评估时均依赖于准确获知其当前荷载状
目前,地下结构荷载反演研究大多针对设计荷载问题。朱合华
为此,将贝叶斯反演方法引入在役地下结构的荷载反演问题,但对于在役结构荷载反演的具体背景,避免对先验分布进行预设,而采用更为合理的弱先验形式。针对由强先验预设解除带来的无解析解问题,引入自适应差分进化算法DREAM(differential evolution adaptive metropolis
在役地下结构荷载分布通常杂乱无章,因此在荷载反演前需对其进行参数表征;基于贝叶斯公式融入结构变形观测数据与先验信息,构建荷载参数后验概率分布表达式;在后验概率分布表达式基础上对荷载参数进行完全贝叶斯估计,即可得到反演荷载的完整后验概率分布,进一步积分可得到荷载期望值。
针对在役地下结构未知的荷载分布,摒弃相关荷载模式假设,采用简明而灵活的样条插值函数逼近任意荷载分布,即:将未知荷载分布参数化为结构上一系列等间距分布的插值参数。具体地,以广义坐标z表示结构上的区域,区域内以n个均布的插值参数x=(x1,…,xn)进行样条插值逼近未知荷载q,借助插值关系表达式即可将未知荷载反演问题转变为中间变量x的反演问题,如下所示:
(1) |
式中:Sp为插值算子,其推导见文献[

图1 基于样条插值函数的荷载参数化方法示意图
Fig.1 Illustration example of load parameterization method based on spline function
预测某一组特定荷载参数x下的结构响应,即正分析过程(“荷载-结构”模型),可由最常见的有限单元法格式表示,如下所示:
(2) |
式中:为结构响应预测值,如结构变形;K为结构离散后的刚度矩阵;f为离散单元节点上的等效荷载,可由荷载分布q及其算子LE根据虚功原理等效而得。线弹性问题可直接由
若实际观测一组结构变形数据d,常规确定性方法通过寻求预测响应与实测变形差值的二阶范数最小解来反演荷载参数,从而获得荷载,如下所示:
(3) |
结构工程中,由于K的条件数十分大,因此d上微小的观测误差就会引起反演结果的剧烈波动,此外若K欠定,则反演结果没有唯一解。这时,学者们通常引入正则化技术,人为修正刚度矩
对参数x的随机反演结果用给定观测数据d下的条件概率表示,贝叶斯公式表达式如下所示:
(4) |
式中:是参数x融入后观测数据d(本研究主要讨论结构变形观测数据)的后验概率分布(PDF);是先验概率;是似然函数;分母又称“边际似然”,是使PDF积分始终为1的归一化常数,在PDF的数值估计流程中通常可以忽略。
先验概率以概率密度函数的形式表征参数x的先验信息。任何合理的工程判断均可作为先验信息纳入反演过程。通常而言,对于在役结构的荷载反演问题,由于其荷载状态通常超出设计预期,因此要求荷载参数服从高斯分布等强先验的分布过于主观。
采用一种弱先验形式,即均匀分布。均匀分布在边界内不提供任何信息,认为在融入观测数据前,参数的所有取值均具有相等概率,对其取值没有任何偏好,即xi~U(qmin,qmax)(i=1,…,n)。据此尽可能依据观测数据推算真实的荷载情况。其中,均匀分布的边界qmin与qmax可在具体案例依据工程经验给出,以过滤掉明显不合理的取值(如某个数量级明显不正常的结果)。
通常而言,在表征完先验概率与似然函数后,将两者代入
(7) |
根据
对于本问题,由于似然函数与先验概率非同分布,并且考虑到高维参数、反演分析模型可能非线性等问题,后验概率(见
步骤1 t=1时,根据先验概率在N条马尔可夫链上随机产生初始样本。
步骤2 t≥2时,开始进化采样过程,过程如下:
(1)变异产生候选样本,计算式如下所示:
(8) |
式中:
(2)交叉确定是否接受候选样本分量,若u<1-CR,则不接受(,ndef更新为ndef=-1);反之,接受新值。u是[0,1]均匀分布产生的随机数,定义交叉概率CR∈[0,1],的表达式如下所示:
(9) |
(3)计算新旧样本后验概率,求得接受概率,以接受概率接受候选样本,
(10) |
退出预烧期(burn-in period)后,链条收敛到后验分布。收敛性判断一般采用Gelman
(11) |
式中:tj为第j(j=1,…,N)条链上的迭代次数;N为总并行链条数;B为链内样本方差在链间的方差;W为链内样本方差在链间的平均值。一般认为时,该链条收
本节基于一个实际工程案例说明方法的应用流程并证明方法的有效性。Smethurst

图2 Smethurst
Fig.2 A field case recorded by Smethurst et al
(1)参数化。桩上分布的未知净土压力参数化为样条插值函数上的n个均布插值参数x=(x1,…,xn)。正如1节讨论的,针对n的取值,本案例进行了一系列试算,如
试算编号 | n取值 |
---|---|
S1 | 4 |
S2 | 8 |
S3 | 10 |
S4 | 12 |
S5 | 14 |
S6 | 16 |
(2)正演分析模型。根据Smethurst
(3)先验概率与似然函数。先验概率取均匀分布,其边界值可根据工程经验给出一个弱约束:桩上的水平土压力值(大致估计为14.5 m(埋深)×20 kN•
(4)完全贝叶斯估计。在DREAM算法框架下开展荷载参数的完全贝叶斯估计。针对每一个试算,根据Vrugt
(5)反演效果评判指标。引入拟合优度
(12) |
式中:qA为真实荷载分布向量;qI为反演荷载分布向量;Mp为向量长度。
以试算S1展示反演中间结果。如

图3 试算S1中收敛因子演化过程
Fig.3 Evolution process of convergence factor in trail calculation S1
试算S1中4个荷载参数的后验边际分布如

图4 试算S1中荷载参数后验边际分布及相关关系
Fig.4 Posterior marginal distribution of parameters (diagonal) and their correlation in trail calculation S1
试算S1的最终反演结果如

图5 反演荷载后验概率分布云图
Fig.5 Color map of PDFs of inversion pressures

图6 试算S1-S6中的反演荷载后验期望值
Fig.6 Expectation of inversion pressures in trial calculations S1-S6
Smethurst
针对本案例开展了确定性反演,反演的条件与随机反演保持一致,反演结果如

图7 桩上内力(弯矩)的概率分布
Fig.7 PDFs of internal force (bending moment) on pile
(1)无需任何主观正则化技术,本方法能够解决确定性反演中常见的“病态反演”问题,反演得到的荷载期望值与实测荷载吻合较好,说明本方法具有较强的工程实用性。
(2)反演结果不限于荷载期望值,还得到了反演荷载的完整后验分布,并建议基于不确定性分析的思想进行进一步统计推断,如推算结构内力的完整概率分布,以相关统计特征值进行工程决策。
(3)本方法于结构固定端的反演结果存在较大不确定性,具体体现为此处的反演期望值与真实荷载存在一定误差,这是由完全的位移约束使得该处的变形响应对荷载变化不敏感所致。
限于篇幅,仅给出了抗滑桩的应用实例,但方法基于通用框架建立,意味着本方法可应用于更多工程案例,为在役地下结构的数字化维养技术提供基础。
作者贡献声明
田志尧:研究构思,算法实现。
宫全美:稿件撰写与审核。
赵 昱:数据采集与处理。
周顺华:方案设计,稿件修订。
参考文献
ESPOSITO M, GHERLONE M, MARZOCCA P. External loads identification and shape sensing on an aluminum wing box: an integrated approach[J]. Aerospace Science and Technology, 2021, 114: 106743. [百度学术]
黄大维,周顺华,赖国泉,等. 地表超载作用下盾构隧道劣化机理与特性[J]. 岩土工程学报, 2017, 39(7): 1173. [百度学术]
HUANG Dawei, ZHOU Shunhua, LAI Guoquan, et al. Mechanisms and characteristics for deterioration of shield tunnels under surface surcharge [J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1173. [百度学术]
刘学增,赖浩然,桑运龙,等. 双侧卸载工况下盾构隧道错缝拼装结构变形特征[J]. 同济大学学报(自然科学版), 2019, 47(10): 1398. [百度学术]
LIU Xuezeng, LAI Haoran, SANG Yunlong, et al. Deformation characteristics of shield tunnel with staggered joints under bilateral unloading condition[J]. Journal of Tongji University (Natural Science), 2019,47(10):1398. [百度学术]
梁发云,方衍其,袁强,等. 软、硬地层中局部堆载对隧道横向变形影响的试验研究[J]. 同济大学学报(自然科学版), 2021, 49(3): 322. [百度学术]
LIANG Fayun, FANG Yanqi, YUAN Qiang, et al. Experimental study of the influence of surface surcharge on tunnel lateral deformation in soft and hard soil [J]. Journal of Tongji University (Natural Science), 2021, 49(3): 322. [百度学术]
周顺华,刘畅,李雪,等. 大断面深埋高水压盾构隧道实测内力反算与分析[J]. 同济大学学报(自然科学版), 2017, 45(7): 970. [百度学术]
ZHOU Shunhua, LIU Chang, LI Xue, et al. Reverse calculation and analysis of measured internal force of deeply buried shield tunnels with large cross section under high water pressure conditions[J]. Journal of Tongji University (Natural Science), 2017, 45(7): 970. [百度学术]
朱合华,崔茂玉,杨金松. 盾构衬砌管片的设计模型与荷载分布的研究[J]. 岩土工程学报, 2000, 22(2): 190. [百度学术]
ZHU Hehua, CUI Maoyu, YANG Jinsong. Design model for shield lining segments and distribution of load [J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 190. [百度学术]
周济民,何川,方勇,等. 黄土地层盾构隧道受力监测与荷载作用模式的反演分析[J]. 岩土力学, 2011, 32(1): 165. [百度学术]
ZHOU Jimin, HE Chuan, FANG Yong, et al. Mechanical property testing and back analysis of load models of metro shield tunnel lining in loess strata [J]. Rock and Soil Mechanics, 2011, 32(1): 165. [百度学术]
李策,王士民,王承震,等. 基于实测内力的大直径水下盾构隧道荷载反演分析[J]. 土木工程学报, 2020, 53(3): 103. [百度学术]
LI Ce, WANG Shiming, WANG Chengzhen, et al. Back analysis of load of large underwater shield tunnel based on measured internal force [J]. China Civil Engineering Journal, 2020, 53(3): 103. [百度学术]
YAN Q, ZHANG W, ZHANG C, et al. Back analysis of water and earth loads on shield tunnel and structure ultimate limit state assessment: a case study[J]. Arabian Journal for Science & Engineering, 2019, 44: 4839. [百度学术]
LI X, ZHOU S, DI H. Observed ground pressure acting on the lining of a large-diameter shield tunnel in sandy stratum under high water pressure[J]. Advances in Civil Engineering, 2020, 2020:1. [百度学术]
MASHIMO H, ISHIMURA T. Evaluation of the load on shield tunnel lining in gravel[J]. Tunnelling & Underground Space Technology, 2003, 18(2/3): 233. [百度学术]
GIODA G, JURINA L. Numerical identification of soil-structure interaction pressures[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 1981, 5(1): 33. [百度学术]
PARKER R L. Understanding inverse theory[J]. Annual Review of Earth and Planetary Sciences, 1977, 5: 53. [百度学术]
LIU R, DOBRIBAN E, HOU Z, et al. Dynamic load identification for mechanical systems: a review[J]. Archives of Computational Methods in Engineering, 2022, 29: 831. [百度学术]
张中生,陈子荫,朱维申. 地下结构荷载的广义反演方法[J]. 土木工程学报, 2001, 34(2): 38. [百度学术]
ZHANG Zhongsheng, CHEN Ziyin, ZHU Weishen. Generalized inverse method for underground structure load [J]. China Civil Engineering Journal, 2001, 34(2): 38. [百度学术]
LIU Q, LIU H, HUANG X, et al. Inverse analysis approach to identify the loads on the external TBM shield surface and its application[J]. Rock Mechanics and Rock Engineering, 2019, 52: 3241. [百度学术]
LIU H, LIU Q, LIU B, et al. An efficient and robust method for structural distributed load identification based on mesh superposition approach[J]. Mechanical Systems and Signal Processing, 2021, 151: 107383. [百度学术]
LI Q, LU Q. A hierarchical Bayesian method for vibration-based time domain force reconstruction problems [J]. Journal of Sound and Vibration, 2018, 421: 190. [百度学术]
朱永全,景诗庭,张清. 隧道支护结构荷载作用的随机反演[J]. 岩土力学, 1996, 17(2): 57. [百度学术]
ZHU Yongquan, JING Shiting, ZHANG Qing. Stochastic back analysis of load on tunnel lining structure [J]. Rock and Soil Mechanics, 1996, 17(2): 57. [百度学术]
何涛. 地下结构随机荷载反演与可靠性分析研究[D]. 上海: 同济大学, 2007. [百度学术]
HE Tao. Stochastic load identification and reliability analysis of underground structures[D]. Shanghai: Tongji University, 2007. [百度学术]
汪海林,刘航宇,顾晓强,等. 基于多元概率分布模型的珠海黏土多参数预测[J]. 岩土工程学报, 2021, 43(增2): 193. [百度学术]
WANG Hailin, LIU Hangyu, GU Xiaoqiang, et al. Multi-parameter prediction of Zhuhai clay based on multivariate probability distribution model [J]. Chinese Journal of Geotechnical Engineering, 2021, 43(Z2): 193. [百度学术]
陶袁钦,孙宏磊,蔡袁强. 考虑约束的贝叶斯概率反演方法[J]. 岩土工程学报, 2021, 43(10): 1878. [百度学术]
TAO Yuanqin, SUN Honglei, CAI Yuanqiang. Bayesian back analysis considering constraints [J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1878. [百度学术]
蒋水华,刘源,章浩龙,等.先验概率分布及似然函数模型的选择对边坡可靠度评价影响的定量评估[J]. 岩土力学, 2020, 41(9): 3087. [百度学术]
JIANG Shuihua, LIU Yuan, ZHANG Haolong, et al. Quantitatively evaluating the effects of prior probability distribution and likelihood function models on slope reliability assessment [J]. Rock and Soil Mechanics, 2020, 41(9): 3087. [百度学术]
张再源,赵永辉,葛双成.基于贝叶斯二维反演的地下连续墙 [百度学术]
隐患电阻率成像[J]. 地球物理学进展, 2017, 32(4): 1868. [百度学术]
ZHANG Zaiyuan, ZHAO Yonghui, GE Shuangcheng. Electrical resistance tomography for underground diaphragm wall defect based on Bayesian inversion [J]. Progress in Geophysics,2017,32(4):1868. [百度学术]
QIN H, VRUGT J A, XIE X, et al. Improved characterization of underground structure defects from two-stage Bayesian inversion using crosshole GPR data[J]. Automation in Construction, 2018, 95: 233. [百度学术]
ASTER R C, BORCHERS B, THURBER C H. Parameter estimation and inverse problems [M]. 2nd ed. Amsterdam: Elsevier Academic Press, 2005. [百度学术]
VRUGT J A, TER BRAAK C J F, DIKS C G H, et al. Accelerating Markov Chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2009, 10(3): 273. [百度学术]
PRESS W H, FLANNERY B P, TEUKOLSKY S A, et al. Numerical recipes in C: the art of scientific computing [M]. 2nd ed. New York: Cambridge University Press, 1996. [百度学术]
SMITH I M, GRIFFITHS D V, MARGETTS L. Programming the finite element method [M]. 5th ed. Chichester: John Wiley & Sons, 2015. [百度学术]
BODIN T, SAMBRIDGE M, GALLAGHER K. A self-parametrizing partition model approach to tomographic inverse problems[J]. Inverse Problems, 2009, 25: 055009. [百度学术]
DENISON D, HOLMES C, MALLIK B, et al. Bayesian nonlinear method for classification and regression[M]. Chichester: John Wiley & Sons, 2002. [百度学术]
METROPOLIS N, ROSENBLUTH A W, ROSENBLUTH M N, et al. Equations of state calculations by fast computing machines[J]. Journal of Chemical Physics, 1953, 21: 1087. [百度学术]
GELMAN A, RUBIN D B. Inference from iterative simulation using multiple sequences[J]. Statistical Science, 1992, 7(4): 457. [百度学术]
SMETHURST J A, POWRIE W. Monitoring and analysis of the bending behaviour of discrete piles used to stabilise a railway embankment[J]. Géotechnique, 2007, 57(8): 663. [百度学术]
ZHANG C, LAMBERT M F, GONG J, et al. Bayesian inverse transient analysis for pipeline condition assessment: parameter estimation and uncertainty quantification[J]. Water Resources Management, 2020, 34: 2807. [百度学术]