摘要
从状态方程、连续方程、动量方程和其他数值技术等方面,对光滑粒子流体动力学(SPH)解决水气二相流问题的数值技术和最新进展进行了综述,并对各项技术进行了评价。最后,提出了未来的研究展望。
光滑粒子流体动力学(SPH)方法是一种强拉格朗日性质的粒子法,在处理大变形、二相流、自由液面等问题上有其独特优势。不同学者对SPH基本方
水气二相流SPH方法所要解决的主要问题是界面间物理参数的不连续引起的计算困难和数值不稳定,各国学者通过对水气交界面处的控制方程进行修正、添加界面力(表面张力和界面斥力等)、添加额外耗散项、采用额外的数值技术等方式来解决水气界面稳定性问题。本研究对水气二相流SPH方法涉及的数值方法进行综述,首先简述了单相流SPH方法的控制方程,然后详述了水气二相流SPH方法对状态方程、连续方程、动量方程的修正处理,最后讨论了背景压力、压力梯度、表面张力、界面斥力以及其他数值技术。兼顾了对水气二相流SPH数值实现方法的系统介绍及应用效果评价,以期为相关研究者提供详尽的数值方法选择依据。在此基础上,对未来水气二相流SPH方法的发展方向进行了展望。
单相流是水气二相流研究的基础,首先对单相流SPH方法的控制方程进行简述。单相流SPH方法的控制方程通常采用拉格朗日形式的纳维斯托克斯(Navier-Stokes)方程,形
(1) |
(2) |
(3) |
(4) |
式中:为密度;为基准密度(压力为零时的密度);t为时间;u为速度;p为压强;为黏度项;g为重力加速度;r为位移。在流体弱可压缩情况下,状态方程(4)指压力为ρ/ρ0的函数,通常由以下2种形式来关联压力和密
(5) |
(6) |
式中:为系数,对于流体取7,对于气体取1.4;为数值声速,弱可压缩假设要求密度变化范围在1%内,因此需满足大于流体最大速度的10倍以上;B为参数,B=。
SPH方法常处理的二相流问题包括水气二相流和水沙二相流。处理水沙二相流时通过增加新的粒子类型来表示泥沙粒子或水沙混合物,也有研究在水粒子中增加含沙量属性的选项,但总体来说水沙之间出现掺混,没有明显的二相界面;处理水气二相流时除了考虑两相之间密度差异巨大之外,还要处理水气界面处由密度不连续导致的压力振荡问题。针对水气二相流SPH问题的特点,相关学者提出了施加背景压力、压力梯度修正、表面张力、界面斥力等技术,本节将分别从状态方程、连续方程、动量方程以及其他技术的角度分别进行阐述。
绝大多数单相流SPH方法不施加背景压力(部分不涉及自由面的单相流SPH方法引入了背景压力,如Marrone
(7) |
(8) |
式中:为背景压力。文献[
背景压力的取值方法主要分为2类。第1类取一个定值,如100 P
(9) |
式中:为气体密度;R为气泡的初始曲率半径;为表面张力系数。Ming
在水气二相流状态方程中添加背景压力是解决由负压导致的张力不稳定问题的最简单直接的方法,适用于各种工况,其难点在于合适背景压力数值的确认。事实上,负压是真实存在的,最近也出现了负压条件下张力不稳定性控制技
除背景压力外,气相状态方程中额外增加的内聚力
(10) |
式中:为内聚力系数。这种处理方式在水中气泡上升和两相溃坝问题中均有用到。值得注意的是,若在气相粒子状态方程中添加了内聚力项,则对应的气相动量方程中也要添加一个内聚力项,计算式如下所示:
(11) |
式中:V为粒子体积;W为核函数;下标i为当前粒子编号;下标j为i粒子支持域内的其他粒子编号。内聚力项的增加在小尺度气液二相流案例中能够有效防止气体粒子发生穿
对于水下爆炸、气泡脉动、高速砰击入水等具有大幅体积变化的问题,需要考虑流体介质的真实压缩性。因此,不是使用人工声速,而是使用真实物理声速。在状态方程中考虑内能变化,压强可以写为密度和内能的函数,统一形
(12) |
式中:e为内能。
刚性气体状态方
(13) |
式中:β为定压比热容和定容比热容之比,对于理想气体,β数值上等同于绝热指数;b为与流体性质相关的参数,理想气体b为零时,
涉及到爆炸初期的计算,理想气体状态方程不再适用,Liu
(14) |
(15) |
式中:为爆炸产物密度与原炸药初始密度之比;E为单位质量比内能;A、B1、R1、R2、均为拟合系数;c0为初始声速;为扰动前后的水密度之比减1;为系数,取0.5;a0为体积修正系数。Liu
除式(
在SPH方法中使用连续方程求解密度,针对水气二相流等大密度比多相流SPH问题,Hu
(16) |
式中:为粒子质量。这种形式符合质量守恒,类似于常见的SPH密度表示方法,但是在
水气二相流SPH方法对于数值稳定性有较高的要求,一些用于单相流SPH方法的数值稳定方法在水气二相流SPH方法中得到广泛应用。δ-SPH方法是连续方程中应用最广泛的数值稳定方法,在水气二相流中也得到普遍应用,因此本节对δ-SPH方法加以阐述。
Molteni
(17) |
(18) |
(19) |
(20) |
式中:D为微分符号;为密度扩散系数,通常取固定值0.1;h为光滑长度;为重整的密度梯度。

图1 不同时刻楔形体入水实验拍摄现
Fig.1 Comparison between experimental snapshots of wedge entr
水气二相流SPH方法的动量方程一般包含压力梯度项、黏度项、重力项、表面张力项,以及防止异相粒子相互穿透的界面斥力项(有时还会添加内聚力项,在2.1节中已有介绍,这里不再赘述),其中表面张力项及界面斥力项是二相流特有的。动量方程如下所示:
(21) |
式中:为表面张力;为界面斥力。本节对压力梯度项、表面张力项和界面斥力项分别进行论述。黏度项(包括人工黏度和物理黏度)的处理与单相流SPH方法一致,此处不再赘述,需要注意的是黏度项仅应用于同相粒子相互作用中。
水气的密度比高达1 000,界面处密度不连续,在计算压力时极易产生较大的误差。Hu
(22) |
(23) |
针对水气界面处压力是否连续的问题,不同学者展开了讨论。Chen
(24) |
式中:为流体压强;为气体压强;为的高阶无穷小量;为流体粒子与气体粒子间的压力。然而,Zhou
(25) |
式中:为修正后的气体粒子压力;为气体粒子参考密度;为流体粒子参考密度;为压力修正系数,其取值在0到1之间。Zhou
(26) |
由于同相粒子间的引力大于异相粒子间的引力,因此在气液交界处存在引力差,产生表面张力。在很多小尺度水气二相流问题(如气泡运动等)中,表面张力是不可忽略的。表面张力通常用2种方法计算,第1种是从分子动力学的角度,在同相粒子和异相粒子间分别施加系数不同的分子间作用力
(27) |
式中:c2为范德华常数;k为小于1的系数,它决定了表面张力的大小。这种方法比较简单,但缺点是随着分辨率的增加,表面张力不会趋于一个定值。
第2种方法是从宏观粒子运动的角度,Brackbill
(28) |
(29) |
(30) |
(31) |
(32) |
(33) |
式中:为表面张力系数;为曲率;n为界面处的单位法向量;为表面狄拉克函数(表面取1,反之为0);c为色标函数;cij为粒子间平均色标函数值。其他粒子法(如MPS等)也采用类似的做法求解表面张
水气二相流界面易出现虚假破碎和不稳定问题,比较简单的方法是在不同粒子间的压力梯度中引入一个较小的斥力以保持界面清晰。Grenier
(34) |
式中:为系数,其大小在0.01到0.1之间。注意,这里的下标i和j要求为异相粒子。
Monaghan
(35) |
式中:为i粒子的参考密度;为j粒子的参考密度。通过这种方式,当i和j粒子有相同的参考密度时界面力为零,即省去了界面判断环节。这种简单的处理方法可以有效地模拟两相密度比在1~1 000的情
后期有学者结合
(36) |
(37) |
(38) |
式中:为作用于j粒子上的阻力;为阻力系数;为粒子间距;为流体粒子速度;为气体粒子速度;为空间中某一点气体粒子的体积分数;为i粒子的总阻力;为支持域内的流体粒子数。Wan

图2 采用和不采用界面斥力项对振荡液滴的SPH模拟结
Fig.2 Simulation results of oscillating liquid drop in SPH model with and without interface sharpness forc
除了针对控制方程的修正处理,其他一些提高计算精度和稳定性的数值技术在水气二相流SPH方法中也经常使用,由于水气二相流SPH方法对数值稳定性有较高要求,因此这些数值技术在水气二相流SPH方法中得到广泛应用。
在弱可压SPH方法中,压力直接由密度决定,因此密度的精确计算非常重要。水气二相流的界面会出现密度、质量间断的问题,相比单相流更易出现密度振荡和压力不稳定。因此,周期性地采用密度求和法过滤密度成为一种常用的数值稳定方
(39) |
式中:为过滤后i粒子的密度;为j粒子的移动最小二乘核函数。
为了防止粒子发生非物理穿透,Monagha
(40) |
(41) |
(42) |
式中:为修正后的当前粒子速度;为系数;为粒子质量;为粒子密度。在单相流SPH方法中,XSPH方法在堰流和孔洞出
在SPH方法数值计算中,由于对粒子的局部扩散性处理不好,因此易出现粒子局部聚集问题,进而影响计算精度。Xu
黎曼求解器是通过对激波问题的更好求解,使得SPH方法求解压力场时非物理波动显著减弱。黎曼求解器较早由Inutsuk
为了保证计算稳定性,水气二相流SPH方法在状态方程、连续方程、动量方程中均采用了一些针对性的处理方式。状态方程中,水气二相流SPH方法普遍添加一个背景压力,背景压力常取定值或最大静水压力的倍数。连续方程中,水气二相流SPH方法没有区别于单相流SPH方法的独有处理方式,但常引入一些增加数值稳定性的技术。动量方程中,水气二相流SPH方法基于两相的粒子体积和密度差异对压力梯度进行修正,并通常会在方程中添加表面张力项和界面斥力项。还有其他一些数值技术常用于水气二相流SPH方法,如密度过滤、XSPH修正、位移修正、黎曼求解器、粒子体积自适应技术等,以获得更好的密度场和更清晰的两相界面。不同物理过程(如两相溃坝、气泡上升、水下爆炸等)的水气二相流SPH模拟需要采用的处理方式均有所区别,要根据具体问题来选用合适的控制方程与数值技术。
随着GPU加速技术的普遍应用,SPH方法在实际工程问题中有了更为广泛的应用前景,水气二相流SPH方法的模拟技术也日趋成熟,因此期待未来研究中水气二相流SPH方法在解决实际问题方面发挥更大的作用,如极端条件下的海工结构受力、水下爆破、空蚀等。具体技术方面,涉及水气二相流的开边界问题、湍流和空化模型的建立以及两相之间速度差较大时界面处的摩擦力等问题需要进一步研究解决。
作者贡献声明
潘 毅:框架设计,写作与修改。
刘玉钰:写作与修改。
汪明智:查阅资料,论文写作。
匡翠萍:论文写作。
倪兴也:论文审阅。
孙鹏楠:学术指导,图表绘制。
参考文献
VIOLEAU D, ROGERS B D. Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future[J]. Journal of Hydraulic Research, 2016, 54(1): 1. [百度学术]
LIU M B, LIU G R. Smoothed particle hydrodynamics (SPH): an overview and recent developments[J]. Archives of Computational Methods in Engineering, 2010, 17: 25. [百度学术]
LUO M, KHAYYER A, LIN P Z. Particle methods in ocean and coastal engineering[J]. Applied Ocean Research, 2021, 114: 102734. [百度学术]
YE Ting, PAN Dingyi, HUANG Can, et al. Smoothed particle hydrodynamics (SPH) for complex fluid flows: recent developments in methodology and applications[J]. Physics of Fluids, 2019, 31(1): 011301. [百度学术]
ZHENG Xing, MA Qingwei, DUAN Wenyang. Comparative study of different SPH schemes on simulating violent water wave impact flows[J]. China Ocean Engineering, 2014, 28(6): 791. [百度学术]
张驰, 张雨新, 万德成. SPH方法和MPS方法模拟溃坝问题的比较分析[J]. 水动力学研究与进展: A辑, 2011, 26(6): 736. [百度学术]
ZHANG Chi, ZHANG Yuxin, WAN Decheng. Comparative study of SPH and MPS methods for numerical simulations of dam breaking problems[J]. Chinese Journal of Hydrodynamics: A, 2011, 26(6): 736. [百度学术]
COLAGROSSI A, LANDRINI M. Numerical simulation of interfacial flows by smoothed particle hydrodynamics[J]. Journal of Computational Physics, 2003, 191(2): 448. [百度学术]
HAMMANI I, MARRONE S, COLAGROSSI A, et al. Detailed study on the extension of the δ-SPH model to multi-phase flow[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 368: 113189. [百度学术]
GRENIER N, ANTUONO M, COLAGROSSI A, et al. An Hamiltonian interface SPH formulation for multi-fluid and free surface flows[J]. Journal of Computational Physics, 2009, 228: 8380. [百度学术]
ZAINALI A, TOFIGHI N, SHADLOO M S, et al. Numerical investigation of Newtonian and non-Newtonian multiphase flows using ISPH method[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 254: 99. [百度学术]
SZEWC K, POZORSKI J, MINIER J P. Simulations of single bubbles rising through viscous liquids using smoothed particle hydrodynamics[J]. International Journal of Multiphase Flow, 2013, 50: 98. [百度学术]
ZHANG Aman, SUN Pengnan, MING Furen. An SPH modeling of bubble rising and coalescing in three dimensions[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 294: 189. [百度学术]
CHEN Z, ZONG Z, LIU M B, et al. An SPH model for multiphase flows with complex interfaces and large density differences[J]. Journal of Computational Physics, 2015, 283: 169. [百度学术]
MOKOS A, ROGERS B D, STANSBY P. K. A multi-phase particle shifting algorithm for SPH simulations of violent hydrodynamics with a large number of particles[J]. Journal of Hydraulic Research, 2017, 55(2): 143. [百度学术]
REZAVAND M, ZHANG Chi, HU Xiangyu. A weakly compressible SPH method for violent multi-phase flows with high density ratio[J]. Journal of Computational Physics, 2020, 402: 109092. [百度学术]
MONAGHAN J J, RAFIEE A. A simple SPH algorithm for multi-fluid flow with high density ratios[J]. International Journal for Numerical Methods in Fluids, 2013, 71(5): 537. [百度学术]
LIND S J, STANSBY P K, ROGERS B D. Incompressible-compressible flows with a transient discontinuous interface using smoothed particle hydrodynamics[J]. Journal of Computational Physics, 2016, 309: 129. [百度学术]
王平平, 张阿漫, 孟子飞. 一种改进的适用于多相流SPH模拟的粒子位移修正算法[J]. 中国科学, 2020, 65(8): 729. [百度学术]
WANG Pingping, ZHANG Aman, MENG Zifei. An improved particle shifting algorithm for multiphase flows in SPH method[J]. Science China, 2020, 65(8): 729. [百度学术]
ZHOU L, CAI Z W, ZONG Z, et al. An SPH pressure correction algorithm for multiphase flows with large density ratio[J]. International Journal for Numerical Methods in Engineering, 2016, 81: 765. [百度学术]
MONAGHAN J J. Simulating free surface flows with SPH[J]. Journal of Computational Physics, 1994, 110(2): 399. [百度学术]
MORRIS J P, FOX P J, ZHU Y. Modeling low Reynolds number incompressible flows using SPH[J]. Journal of Computational Physics, 1997, 136(1): 214. [百度学术]
MARRONE S, COLAGROSSI A, ANTUONO M, et al. An accurate SPH modelling of viscous flows around bodies at low and moderate Reynolds numbers[J]. Journal of Computational Physics, 2013, 245: 456. [百度学术]
MONAGHAN J J. SPH without a tensile instability[J]. Journal of Computational Physics, 2000, 159(2): 290. [百度学术]
ADAMI S, HU X Y, ADAMS N A. A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation[J]. Journal of Computational Physics, 2010, 229: 5011. [百度学术]
SHADLOO M S, ZAINALI A, YILDIZ M, et al. A robust weakly compressible SPH method and its comparison with an incompressible SPH[J]. International Journal for Numerical Methods in Engineering, 2012, 89(8): 939. [百度学术]
YANG Qiuzu, XU Fei, YANG Yang, et al. Two-phase SPH model based on an improved Riemann solver for water entry problems[J]. Ocean Engineering, 2020, 199: 107039. [百度学术]
SUN Pengnan, TOUZÉ D L, ZHANG Aman. Study of a complex fluid-structure dam-breaking benchmark problem using a multi-phase SPH method with APR[J]. Engineering Analysis with Boundary Elements, 2019, 104: 240. [百度学术]
MING Furen, SUN Pengnan, ZHANG Aman. Numerical investigation of rising bubbles bursting at a free surface through a multiphase SPH model[J]. Meccanica, 2017, 52(11/12): 2665. [百度学术]
SUN Pengnan, COLAGROSSI A, MARRONE S, et al. Multi-resolution delta-plus-SPH with tensile instability control: towards high Reynolds number flows[J]. Computer Physics Communications, 2018, 224: 63. [百度学术]
SUN Pengnan, TOUZÉ D L, OGER G, et al. An accurate SPH volume adaptive scheme for modeling strongly-compressible multiphase flows, part 1: numerical scheme and validations with basic 1D and 2D benchmarks[J]. Journal of Computational Physics, 2021, 426: 109937. [百度学术]
SUN Pengnan, TOUZÉ D L, OGER G, et al. An accurate SPH volume adaptive scheme for modeling strongly-compressible multiphase flows, part 2: extension of the scheme to cylindrical coordinates and simulations of 3D axisymmetric problems with experimental validations[J]. Journal of Computational Physics, 2021, 426: 109936. [百度学术]
孙鹏楠. 物体与自由液面耦合作用的光滑粒子流体动力学方法研究[D]. 哈尔滨:哈尔滨工程大学, 2018. [百度学术]
SUN Pengnan. Study on SPH method for the simulation of object-free surface interactions[D]. Harbin: Harbin Engineering University, 2018. [百度学术]
NUGENT S, POSCH H A. Liquid drops and surface tension with smoothed particle applied mechanics[J]. Physical Review E, 2000, 62(4): 4968. [百度学术]
WAN Hang, LI Ran, PU Xunchi, et al. Numerical simulation for the air entrainment of aerated flow with an improved multiphase SPH model[J]. International Journal of Computational Fluid Dynamics, 2018, 31(4): 1. [百度学术]
韩旭, 杨刚, 龙述尧. SPH方法在两相流动问题中的典型应用[J]. 湖南大学学报(自然科学版), 2007, 34(1): 28. [百度学术]
HAN Xu, YANG Gang, LONG Shuyao. Typical application of SPH method to two-phase flow problems[J]. Journal of Hunan University (Natural Sciences), 2007, 34(1): 28. [百度学术]
COLE R H. Underwater explosions[M]. Princeton: Princeton University Press, 1948. [百度学术]
MENIKOFF R, PLOHR B J. The Riemann problem for fluid flow of real materials[J]. Review of Modern Physics, 1989, 61: 75. [百度学术]
SAUREL R, ABGRALL R. A simple method for compressible multifluid flows[J]. SIAM Journal on Scientific Computing, 1999, 21(3): 1115. [百度学术]
NOURGALIEV R R, DINH T N, THEOFANOUS T G. Adaptive characteristics-based matching for compressible multifluid dynamics[J]. Journal of Computational Physics, 2006, 213: 500. [百度学术]
宗智, 邹丽, 刘谋斌, 等. 模拟二维水下爆炸问题的光滑粒子(SPH)方法[J]. 水动力学研究与进展: A 辑, 2007,22(1): 61. [百度学术]
ZONG Zhi, ZOU Li, LIU Moubin, et al. SPH simulation of two-dimensional underwater explosion[J]. Chinese Journal of Hydrodynamics: A, 2007, 22(1): 61. [百度学术]
LIU M B, LIU G R, LAM K Y, et al. Smoothed particle hydrodynamics for numerical simulation of underwater explosion[J]. Computational Mechanics, 2003, 30(2): 106. [百度学术]
DOBRATZ B M, CRAWFORD P C. LLNL explosives handbook[R]. Livermore: Lawrence Livermore National Laboratory, 1981. [百度学术]
ZHANG Aman, YANG Wenshan, HUANG Chao, et al. Numerical simulation of column charge underwater explosion based on SPH and BEM combination[J]. Computers & Fluids, 2013, 71: 169. [百度学术]
CAMPANA E F, CARCATERRA A, CIAPPI E, et al. Some insights into slamming forces: compressible and incompressible phases[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2000, 214(6): 881. [百度学术]
CARCATERRA A, CIAPPI E, IAFRATI A, et al. Shock spectral analysis of elastic systems impacting on the water surface[J]. Journal of Sound and Vibration, 2000, 229(3): 579. [百度学术]
MARRONE S, COLAGROSSI A, PARK J S, et al. Challenges on the numerical prediction of slamming loads on LNG tank insulation panels[J]. Ocean Engineering, 2017, 141: 512. [百度学术]
HU X Y, ADAMS N A. A multi-phase SPH method for macroscopic and mesoscopic flows[J]. Journal of Computational Physics, 2006, 213(2): 844. [百度学术]
MOLTENI D, COLAGROSSI A. A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH[J]. Computer Physics Communications, 2009, 180(6): 861. [百度学术]
ANTUONO M, COLAGROSSI A, MARRONE S, et al. Free surface flows solved by means of SPH schemes with numerical diffusive terms[J]. Computer Physics Communications, 2010, 181(3): 532. [百度学术]
MARRONE S, ANTUONO M, COLAGROSSI A, et al. δ-SPH model for simulating violent impact flows[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(13/16): 1526. [百度学术]
DE CHOWDHURY S, SANNASIRAJ S A. Numerical simulation of 2D sloshing waves using SPH with diffusive terms[J]. Applied Ocean Research, 2014, 47: 219. [百度学术]
MERINGOLO D D, ARISTODEMO F, VELTRI P. SPH numerical modeling of wave-perforated breakwater interaction[J]. Coastal Engineering, 2015, 101: 48. [百度学术]
GONG Kai, SHAO Songdong, LIU Hua, et al. Two-phase SPH simulation of fluid-structure interactions[J]. Journal of Fluids and Structures, 2016, 65: 155. [百度学术]
HU X Y, ADAMS N A. An incompressible multi-phase SPH method[J]. Journal of Computational Physics, 2007, 227(1): 264. [百度学术]
徐丞君, 徐胜利, 刘庆源. 修正压力梯度粒子近似SPH方法计算大密度比界面流动[J]. 应用数学和力学, 2019, 40(1): 20. [百度学术]
XU Chengjun, XU Shengli, LIU Qingyuan. Modified particle approximation to pressure gradients in the SPH algorithm for interfacial flows with high density ratios[J]. Applied Mathematics and Mechanics, 2019, 40(1): 20. [百度学术]
TARTAKOVSKY A M, FERRIS K F, MEAKIN P. Lagrangian particle model for multiphase flows[J]. Computer Physics Communications, 2009, 180(10): 1874. [百度学术]
BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335. [百度学术]
LAFAURIE B, NARDONE C, SCARDOVELLI R, et al. Modelling merging and fragmentation in multiphase flows with SURFER[J]. Journal of Computational Physics, 1994, 113(1): 134. [百度学术]
MORRIS J P. Simulating surface tension with smoothed particle hydrodynamics[J]. International Journal for Numerical Methods in Fluids, 2000, 33(3): 333. [百度学术]
文潇, 万德成. 用MPS方法数值模拟含多相流体的液舱晃荡[C]//第十九届中国海洋(岸)工程学术讨论会论文集. 重庆: 中国海洋工程学会, 2019: 157-163. [百度学术]
WEN Xiao, WAN Decheng. Numerical simulation of tank sloshing in multiphase fluid with MPS method[C]//Proceedings of the 19th Chinese Ocean(Coast) Engineering Symposium. Chongqing: Chinese Ocean Engineering Society, 2019: 157-163. [百度学术]
WEN Xiao, ZHAO Weiwen, WAN Decheng. A multiphase MPS method for bubbly flows with complex interfaces[J]. Ocean Engineering, 2021, 238: 109743. [百度学术]
KHANPOUR M, ZARRATI A R, KOLAHDOOZAN M, et al. Numerical modeling of free surface flow in hydraulic structures using smoothed particle hydrodynamics[J]. Applied Mathematical Modelling, 2016, 40: 9821. [百度学术]
PADOVA D D, MOSSA M, SIBILLA S. SPH numerical investigation of characteristics of hydraulic jumps[J]. Environmental Fluid Mechanics, 2018, 18(4): 849. [百度学术]
沈雁鸣, 陈坚强. SPH方法对水气二相流自由界面运动的追踪模拟[J]. 空气动力学学报, 2012, 30(2): 157. [百度学术]
SHEN Yanming, CHEN Jianqiang. Numerical tracking of interface in multiphase flows with smoothed particle hydrodynamics[J]. Acta Aerodynamica Sinica, 2012, 30(2): 157. [百度学术]
SHAHRIARI S, HASSAN I G, KADEM L. Modeling unsteady flow characteristics using smoothed particle hydrodynamics[J]. Applied Mathematical Modelling, 2013, 37(3): 1431. [百度学术]
XU R, STANSBY P, LAURENCE D. Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach[J]. Journal of Computational Physics, 2009, 228(18): 6703. [百度学术]
LIND S J, XU R, STANSBY P K, et al. Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves[J]. Journal of Computational Physics, 2012, 231(4): 1499 [百度学术]
SUN P N, COLAGROSSI A, MARRONE S, et al. The δplus-SPH model: simple procedures for a further improvement of the SPH scheme[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 315: 25. [百度学术]
ANTUONO M, SUN P N, MARRONE S, et al. The δ-ALE-SPH model: an arbitrary Lagrangian-Eulerian framework for the δ-SPH model with particle shifting technique[J]. Computers & Fluids, 2021, 216: 104806. [百度学术]
INUTSUKA S. Godunov-type SPH[J]. Memorie Della Societa Astronomica Italiana, 1994, 65: 1027. [百度学术]
孙鹏楠, 明付仁, 李明康, 等. 光滑粒子流体动力学方法在高压气泡动力学问题中的应用研究[C]//第三十一届全国水动力学研讨会论文集. 厦门: 海洋出版社, 2020: 985-990. [百度学术]
SUN Pengnan, MING Furen, LI Mingkang, et al. Application of smoothed particle hydrodynamics method to high pressure bubble dynamics[C]// Proceedings of the 31st National Symposium on Hydrodynamics. Xiamen: China Ocean Press, 2020: 985-990. [百度学术]