摘要
建立以光伏发电、风电、燃气、网电多能源协同供能的冷热电联供系统。以独立供能冷热电联供系统为度量基准,构建由系统投资运行成本、一次能源利用、二氧化碳排放组成的多目标优化函数。针对全年冬季、夏季与过渡季的3种典型日的电热冷负荷需求,分析系统的容量配置以及“以电定热”“以热定电”的运行策略的协同优化。考虑优化问题的连续和组合优化的混合特性,模型求解采用多目标粒子群双层优化算法。采用正交试验分析关键因素对决策结果的影响作用。仿真结果表明,风光气电协同供能的冷热电联供系统相比独立供能系统,具有明显的经济、节能与环保的综合优势。
随着光伏发电、风电等清洁能源的飞速发展和广泛普及,围绕多能协同供能的冷热电联供(combined cooling heating and power,CCHP)系统配置及运行优化问题是当前开展CCHP系统规划建设的重要内
可再生能源的广泛应用及其出力的随机性和波动性使多能耦合互补的能源系统更加复杂,其研究具有重要的前瞻性和应用价
本文构建的风光气电协同供能CCHP系统如

图1 风光气电协同供能CCHP系统
Fig.1 CCHP system considering photovoltaic-wind-gas-power collaborative energy supply
光伏发电受到太阳辐射强度和温度的直接影响,
(1) |
式中:、分别为光伏发电的输出功率和出力系数;为光伏发电的额定功率;的计算采用晶体硅太阳光伏电池的出力模
风速是影响风力发电输出功率的主要因素,本文采用分段线性法建立风力发电机组的出力模
(2) |
(3) |
式中:,分别为风电的输出功率和出力系数; 为风电的额定功率;为实时风速;=1 m⋅
内燃机的热电转换效率与额定功率存在紧密的耦合关系,可以描述为额定功率的函
(4) |
(5) |
考虑到内燃机的FEL(following the electrical loads)和FTL(following the thermal loads)两种不同运行策略对系统出力性能的影响作用,在此引入0‒1布尔变量,当时表示当前时刻运行FEL策略,表示当前时刻运行FTL策略。
当光伏发电和风电出力水平大于电负荷时,电储能装置消纳多余的电能;反之,电储能装置释放电能进行补足。另外,余热回收装置的回收效率取为90%,溴化锂吸收式制冷机的制冷系数取为0.7,燃气锅炉的转换效率取为50%,电制冷机的制冷系数取为3;并且设备运行约束需要满足设备实际出力不能超过其安装容量。
从经济、节能与环保的不同视角,集成考虑包括综合成本节约率、一次能源节约率、CO2减排率的多评价指标成为度量CCHP系统的主要手
(6) |
(7) |
(8) |
式(
(9) |
(10) |
(11) |
式中:与分别为系统各个设备容量及其单位投资成本;与为各个时刻的网电与天然气消耗量;与分别为网电与天然气单位购置成本;与分别为生产单位网电与天然气的CO2排放量。
系统参数设置如
设备名称 | 设备单位投资成本/ (万元•k | 能源名称 | 能源单位成本/ (元•kW | CO2排放/ (kg•kW |
---|---|---|---|---|
光伏机组 | 0.58 | 网电 |
高峰:1.04 11:00—12:00 18:00—22:00 | 0.82 |
风电机组 | 0.38 | |||
电储能 | 0.35 | |||
内燃机 | 0.8 |
平段:0.58 08:00—10:00 13:00—17:00 23:00—24:00 | ||
余热回收装置 | 0.04 | |||
溴化锂吸收式制冷机 | 0.10 | |||
燃气锅炉 | 0.04 |
低谷:0.28 01:00—07:00 | ||
电制冷机 | 0.09 | |||
天然气 | 0.32 | 0.24 |
考虑多目标优化问题是max[,,],根据式(
策略 | 季节 | /万元 | /kWh | /kg |
---|---|---|---|---|
FEL 31.1% 45.9% | 冬季 | 0.130 | 3 531.744 | 847.619 |
夏季 | 0.123 | 3 273.649 | 785.676 | |
过渡季 | 0.121 | 3 273.649 | 785.676 | |
FTL 25.0% 62.0% | 冬季 | 0.106 | 2 246.757 | 909.586 |
夏季 | 0.094 | 1 803.534 | 871.499 | |
过渡季 | 0.074 | 1 158.864 | 841.415 |
在该优化问题中,决策变量为光伏、风电和内燃机组的安装容量以及内燃机的FEL和FTL的运行策略,具有连续和组合优化的混合特性,模型求解采用多目标粒子群双层优化算法,算法流程如

图2 优化算法流程图
Fig.2 Flow chart of optimization algorithm
选取北方某一商业楼为分析对象,其全年冬季、夏季与过渡季典型日的电热冷负荷以及根据当地太阳辐射强度、温度和风速计算得到的光伏发电与风电出力系数如

图3 全年典型日电热冷负荷以及光伏与风电出力系数
Fig.3 Annual typical daily electrical, heating, cooling loads, and output coefficients of photovoltaic and wind power
选择外层优化的种群数60,迭代次数300;内层优化的种群数50,迭代次数100。非劣解集的Pareto解的个数上限设定为20。选取目标空间中距离原点欧式距离最短的前10个Pareto最优解进行展示,结果如
典型日 | λt | |||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
冬季 | 52.927 | 61.724 | 26.778 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.817 | 0.788 | 0.489 |
53.130 | 62.653 | 27.116 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0.819 | 0.787 | 0.487 | |
52.372 | 65.294 | 28.357 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.824 | 0.786 | 0.482 | |
50.242 | 61.411 | 27.676 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.815 | 0.790 | 0.491 | |
57.661 | 63.256 | 26.832 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0.824 | 0.785 | 0.483 | |
50.930 | 65.010 | 28.871 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.823 | 0.787 | 0.483 | |
52.789 | 65.598 | 28.635 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0.826 | 0.786 | 0.481 | |
50.850 | 64.271 | 29.107 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.823 | 0.788 | 0.485 | |
53.033 | 67.544 | 28.449 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0.829 | 0.785 | 0.479 | |
51.539 | 66.591 | 29.522 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0.828 | 0.787 | 0.481 | |
夏季 | 97.903 | 101.122 | 8.809 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0.514 | 0.122 | 0.177 |
99.403 | 102.234 | 8.909 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0.520 | 0.118 | 0.173 | |
98.750 | 105.475 | 10.270 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0.527 | 0.114 | 0.168 | |
100.250 | 106.159 | 10.370 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0.534 | 0.111 | 0.166 | |
101.750 | 107.659 | 10.470 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0.545 | 0.109 | 0.163 | |
103.250 | 109.159 | 10.570 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0.557 | 0.107 | 0.160 | |
103.785 | 110.340 | 12.602 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0.567 | 0.106 | 0.158 | |
103.490 | 112.121 | 14.401 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0.574 | 0.105 | 0.155 | |
104.037 | 113.621 | 14.501 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0.581 | 0.104 | 0.153 | |
103.838 | 115.286 | 15.892 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0.587 | 0.102 | 0.150 | |
过渡季 | 86.462 | 87.998 | 7.060 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0.571 | 0.319 | 0.245 |
89.909 | 90.584 | 9.260 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0.604 | 0.313 | 0.238 | |
91.796 | 93.718 | 11.071 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0.638 | 0.309 | 0.232 | |
97.894 | 95.084 | 9.960 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0.666 | 0.301 | 0.225 | |
102.039 | 100.949 | 11.446 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0.735 | 0.297 | 0.219 | |
102.106 | 103.997 | 12.694 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0.763 | 0.295 | 0.216 | |
103.228 | 107.740 | 11.798 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0.795 | 0.292 | 0.213 | |
108.967 | 110.527 | 16.213 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0.857 | 0.289 | 0.207 | |
110.467 | 112.027 | 16.313 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0.876 | 0.287 | 0.205 | |
114.447 | 113.265 | 14.159 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0.897 | 0.283 | 0.202 |

图4 Pareto最优前沿散点图
Fig.4 Scatter diagram of Pareto optimal frontier
从优化结果可以看出,在3种典型日下,内燃机安装容量相比光伏安装容量和风电安装容量,优化配置明显偏小,说明从经济、能源和环境的角度,系统应尽可能采用光伏发电和风电的清洁能源供能模式。总体上,风电出力系数要明显大于光伏出力系数,和在冬季、过渡季、夏季随着风电出力系数的减小而呈增长趋势,并且随着从冬季明显下降到过渡季和夏季,和增长幅度较大。依据目标空间中距离原点欧式距离最短的Pareto最优解,在冬季、夏季、过渡季的优化结果分别为26.778、8.809、7.060 kW,说明内燃机是供应热负荷的最佳方案,而夏季和过渡季的热负荷几乎为0,相应的内燃机安装容量不足10 kW,其出力作用不显著。
在运行策略方面,3种典型日差异较大。在冬季典型日,内燃机在07:00—22:00期间全部采用FTL运行策略,对应着热负荷的需求时段。其原因在于,
通过目标值优化,可以明显看出,风光气电协同供能CCHP相比独立供能CCHP系统具有更低的综合成本、一次能源消耗、CO2排放。依据目标空间中距离原点欧式距离最短的Pareto最优解,风光气电协同供能CCHP相比独立供能CCHP系统,综合成本节约率、一次能源节约率、CO2减排率在冬季典型日分别为18.3%、21.2%、51.1%,在夏季典型日分别为48.6%、87.8%、82.3%,在过渡季典型日分别为42.9%、68.1%、75.5%。
选取

图5 3种典型日的系统出力
Fig.5 System output on three kinds of typical day
在冬季典型日,内燃机出力较为明显,主要用于满足热负荷,在07:00—11:00期间,热负荷达到峰值,内燃机安装容量不足以满足峰值需求,需要燃气锅炉进行补足;在夏季典型日,内燃机出力弱,仅在08:00—10:00期间有较为明显的出力,而该阶段的电储能为0,说明该阶段的内燃机出力在满足冷负荷的同时,用于补足光伏发电和风电不能满足的电负荷,在10:00—18:00期间,冷负荷处于高峰期,尽管网电处于高峰和平段电价,但是因电制冷机的制冷效率远高于内燃机,冷负荷主要由电制冷机消耗网电进行供应;在过渡季典型日,内燃机出力水平低,内燃机在热负荷较高的07:00—12:00和19:00—22:00期间进行供热,同时由于01:00—11:00期间,光伏发电和风电出力水平较弱,而该时段的电价大部分处于低谷和平段,因此采用网电进行电负荷补足。
在3种典型日下,电储能对光伏和风力发电的消纳作用明显,特别是夏季和过渡季典型日,在出力系数的高峰期,将富裕的电量进行存储,为后续出力系数低谷期提供电力供应。而在独立供能CCHP系统中,3种典型日下的冷热负荷由内燃机供应,电负荷由网电进行大量补足。
系统经济、性能等众多因素会对系统决策结果产生重要影响,在此采用正交试验方法分析系统部分关键因素对优化决策的影响作用。通过优化过程的初步分析,以冬季典型日为场景,并且仍以独立供能CCHP在FTL运行策略下的性能指标为度量依据,选择光伏、风电、内燃机的单位投资成本、、以及余热回收效率为多因素,分析其对决策目标、 、以及决策变量、的影响。采用4因素3水平正交试验,A1~A3、B1~B3、C1~C3和D1~D3分别代表、、的3水平设置。在A1~A3中,A2水平取值为
实验序号 | 影响因素 | 决策目标 | 决策变量 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | A1(0.58✕80%) | B1(0.38✕80%) | C1(0.8✕80%) | D1(50%) | 0.697 1 | 0.543 0 | 0.417 6 | 82.58 | 89.32 | 34.50 | ||
2 | A1 | B2(0.38) | C2(0.8) | D2(70%) | 0.826 5 | 0.685 7 | 0.454 5 | 78.89 | 89.91 | 34.01 | ||
3 | A1 | B3(0.38✕120%) | C3(0.8✕120%) | D3(90%) | 0.810 5 | 0.786 8 | 0.485 7 | 53.84 | 62.91 | 26.98 | ||
4 | A2(0.58) | B1 | C2 | D3 | 0.811 1 | 0.785 2 | 0.482 8 | 56.45 | 63.75 | 26.79 | ||
5 | A2 | B2 | C3 | D1 | 0.709 3 | 0.543 0 | 0.417 6 | 80.39 | 89.81 | 34.44 | ||
6 | A2 | B3 | C1 | D2 | 0.860 3 | 0.725 6 | 0.482 3 | 61.72 | 78.71 | 39.32 | ||
7 | A3(0.58✕120%) | B1 | C3 | D2 | 0.814 5 | 0.741 2 | 0.493 8 | 51.54 | 74.59 | 34.06 | ||
8 | A3 | B2 | C1 | D3 | 0.852 0 | 0.785 7 | 0.487 3 | 61.87 | 62.16 | 24.74 | ||
9 | A3 | B3 | C2 | D1 | 0.748 3 | 0.543 0 | 0.417 6 | 77.47 | 90.42 | 35.55 | ||
极差分析 | ||||||||||||
决 策 目 标 | 极差R | 0.0269 | 0.0322 | 0.0250 | 0.1156 |
:光伏机组的单位投资成本(万元•k :风电机组的单位投资成本(万元•k :内燃机的单位投资成本(万元•k :余热回收效率 :综合成本率 :一次能源消耗率 :CO2排放率 :光伏机组安装容量(kW) :风电机组安装容量(kW) :内燃机安装容量(kW) | ||||||
因素主次顺序 | B>A>C>D | |||||||||||
最优水平组合 | A1 | B1 | C3 | D1 | ||||||||
极差R | 0.0182 | 0.0183 | 0.0190 | 0.2429 | ||||||||
因素主次顺序 | D>C>B>A | |||||||||||
最优水平组合 | A1 | B2 | C2 | D1 | ||||||||
极差R | 0.0136 | 0.0116 | 0.0141 | 0.0677 | ||||||||
因素主次顺序 | D>C>A>B | |||||||||||
最优水平组合 | A1 | B2 | C2 | D1 | ||||||||
决策 变量 | 极差R | 8.15 | 10.19 | 9.01 | 22.76 | |||||||
因素主次顺序 | D>B>C>A | |||||||||||
最优水平组合 | A3 | B1 | C3 | D3 | ||||||||
极差R | 4.99 | 4.74 | 5.59 | 26.91 | ||||||||
因素主次顺序 | D>C>A>B | |||||||||||
最优水平组合 | A3 | B1 | C3 | D3 | ||||||||
极差R | 2.06 | 2.89 | 1.03 | 9.62 | ||||||||
因素主次顺序 | D>B>A>C | |||||||||||
最优水平组合 | A3 | B2 | C3 | D3 |
选择
本文建立了以光伏发电、风电、燃气、网电多能源协同供能的冷热电联供系统,分析了容量配置与运行策略的协同优化问题。仿真结果表明,由于利用了光伏发电和风电的清洁能源优势,并且考虑了多种能源的协同供能,相比独立供能CCHP系统,本文所建立的多能协同供能CCHP系统具有更低的综合成本、一次能源消耗量和CO2排放量,表现出明显的经济、节能与环保的综合优势。本文在冷热电联供系统中考虑了风光气电协同供能的特点,后续研究可以继续引入生物质能、太阳能光伏/热等可再生能源技术,进一步提升冷热电联供系统的可靠性和灵活性。此外,针对关键因素的正交实验分析,本文针对光伏、风电、内燃机的单位投资成本以及余热回收效率进行了4因素3水平分析,后续可以遴选更多的经济与性能参数分析其对优化决策的影响效果。
作者贡献声明
戴毅茹:提出论文研究技术路线,负责系统建模、优化算法设计及仿真结果分析。
王 坚:国内发展现状分析,确定论文选题方向,提出系统构型。
曾依浦:优化算法编程。
参考文献
ELANGO K, PRAKASH A, UMASANKAR L. Multiobjective optimization model for renewable energy sources and load demands uncertainty consideration for optimal design of hybrid combined cooling, heating and power systems[J]. Energy Research, 2022, 46(6): 7840. DOI: 10.1002/er.7684. [百度学术]
HERRANDO M, RAMOS A. Photovoltaic-thermal (PV-T) systems for combined cooling, heating and power in buildings: a review[J]. Energies, 2022, 15(9): 1. DOI: 10.3390/en15093021. [百度学术]
MAHDAVI N, MOJAVER P, KHALILARYA S. Multi-objective optimization of power, CO2 emission and exergy efficiency of a novel solar-assisted CCHP system using RSM and TOPSIS coupled method[J]. Renewable Energy, 2022, 185: 506. DOI:10.1016/j.renene.2021.12.078. [百度学术]
MELO F M, MAGNANI F S, CARVALHO M. A decision-making method to choose optimal systems considering financial and environmental aspects: application in hybrid CCHP systems[J]. Energy, 2022, 250: 123816. DOI: 10.1016/j.energy.2022.123816. [百度学术]
贾云辉,张峰.考虑分布式风电接入下的区域综合能源系统多元储能双层优化配置研究[J].可再生能源, 2019, 37(10): 1524. DOI: 10.13941/j.cnki.21-1469/tk.2019.10.017. [百度学术]
JIA Yunhui, ZHANG Feng. A bi-level optimal configuration of multiple storage in regional integrated energy system with distribution wind power inclusion[J]. Renewable Energy Resources, 2019, 37(10):1524. DOI: 10.13941/j.cnki.21-1469/tk.2019.10.017. [百度学术]
NAMI H, ANVARI-MOGHADDAM A, NEMATI A. Modeling and analysis of a solar boosted biomass-driven combined cooling, heating and power plant for domestic applications[J]. Sustainable Energy Technologies and Assessments, 2021, 47: 101326. DOI: 10.1016/j.seta.2021.101326. [百度学术]
严晓生,吴迪.CCHP系统优化配置及与传统热电联产系统的性能对比分析[J].中国测试,2020, 46(7): 159. DOI: 10.11857/j.issn.1674-5124.2020020037. [百度学术]
YAN Xiaosheng, WU Di. Optimal configuration of CCHP system and performance comparison with traditional cogeneration system[J]. China Measurement & Test, 2020, 46(7): 159. DOI: 10.11857/j.issn.1674-5124.2020020037. [百度学术]
黄景光,汪潭,林湘宁,等.面向风电消纳的区域综合能源系统鲁棒优化调度[J/OL].电测与仪表.[2021-11-17].http://kns.cnki.net/kcms/detail/23.1202.TH.20210526.1322.002.html. DOI: 10.19753/j.issn1001-1390.2021.12.016. [百度学术]
HUANG Jingguang, WANG Tan, LIN Xiangning, et al. Robust optimal dispatch of regional integrated energy system for wind power consumption[J/OL]. Electrical Measurement & Instrumentation.[2021-11-17].http://kns.cnki.net/kcms/detail/23.1202.TH.20210526.1322.002.html. DOI: 10.19753/j.issn1001-1390.2021.12.016. [百度学术]
熊文,刘育权,苏万煌,等.考虑多能互补的区域综合能源系统多种储能优化配置[J].电力自动化设备, 2019, 39(1): 118. DOI :10.16081/j.issn.1006-6047.2019.01.018. [百度学术]
XIONG Wen, LIU Yuquan, SU Wanhuang, et al. Optimal configuration of multi-energy storage in regional integrated energy system considering multi-energy complementation[J]. Electric Power Automation Equipment, 2019, 39(1): 118. DOI :10.16081/j.issn.1006-6047.2019.01.018. [百度学术]
张晶,范辉,张肖杰,等.考虑风险成本的跨区域综合能源系统调度优化模型[J].热力发电, 2021, 50(8): 121. DOI: 10.19666/j.rlfd.202104070. [百度学术]
ZHANG Jing, FAN Hui, ZHANG Xiaojie, et al. Optimal model of cross-regional integrated energy system dispatching considering risk cost[J]. Thermal Power Generation, 2021, 50(8): 121. DOI: 10.19666/j.rlfd.202104070. [百度学术]
NAZIR M S, DIN S U, SHAH W A, et al. Optimal economic modelling of hybrid combined cooling, heating, and energy storage system based on gravitational search algorithm-random forest regression[J]. Complexity, 2021: 5539284. DOI: 10.1155/2021/5539284. [百度学术]
SONG Z, LIU T, LIN Q. Multi-objective optimization of a solar hybrid CCHP system based on different operation modes[J]. Energy, 2020, 206, 118125. DOI: 10.1016/j.energy.2020.118125. [百度学术]
REN F, WEI Z, ZHAI X. A review on the integration and optimization of distributed energy systems[J]. Renewable and Sustainable Energy Reviews, 2022, 162: 112440. DOI: 10.1016/j.rser.2022.112440. [百度学术]
王磊,姜涛,宋丹,等.基于灵活热电比的区域综合能源系统多目标优化调度[J].电力系统保护与控制, 2021, 49(8): 151. DOI: 10.19783/j.cnki.pspc.201561. [百度学术]
WANG Lei, JIANG Tao, SONG Dan, et al. Multi-objective optimal dispatch of a regional integrated energy system based on a flexible heat-to-electric ratio[J]. Power System Protection and Control, 2021, 49(8): 151. DOI: 10.19783/j.cnki.pspc.201561. [百度学术]
AGHAEI A T, SARAY R K. Optimization of a combined cooling, heating, and power (CCHP) system with a gas turbine prime mover: a case study in the dairy industry[J]. Energy, 2021, 229: 120788. DOI: 10.1016/j.energy.2021.120788. [百度学术]
REN F, WEI Z, ZHAI X. Multi-objective optimization and evaluation of hybrid CCHP systems for different building types[J]. Energy, 2021, 215, 119096. DOI: 10.1016/j.energy.2020.119096. [百度学术]
任洪波,周奥林,吴琼,等.基于不同运行模式的CCHP-ORC系统运行仿真与性能评估[J].热能动力工程, 2019, 34(10): 1. DOI: 10.16146/j.cnki.Rndlgc.2019.10.001. [百度学术]
REN Hongbo, ZHOU Aolin, WU Qiong, et al. Operation simulation and performance evaluation of CCHP-ORC system based on different operation modes[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(10): 1. DOI: 10.16146/j.cnki.Rndlgc.2019.10.001. [百度学术]
毕二朋,胡明辅,袁江,等.光伏系统设计中太阳辐射强度影响的分析[J].节能技术, 2012, 30(171): 45. [百度学术]
BI Erpeng, HU Mingfu, YUAN Jiang, et al. Influence of solar radiation intensity in the design of PV system[J]. Energy Conservation Technology, 2012, 30(171): 45. [百度学术]
杨茂,杨琼琼.风电机组风速‒功率特性曲线建模研究综述[J].电力自动化设备, 2018, 38(2): 34. DOI: 10.16081/j.issn.1006-6047.2018.02.005. [百度学术]
YANG Mao, YANG Qiongqiong. Review of modeling of wind speed-power characteristic curve for wind turbine[J]. Electric Power Automation Equipment, 2018, 38(2): 34. DOI: 10.16081/j.issn.1006-6047.2018.02.005. [百度学术]
WU Q, REN H, GAO W, et al. Multi-criteria assessment of combined cooling, heating and power systems located in different regions in Japan[J]. Applied Thermal Engineering, 2014, 73: 660. DOI: 10.1016/j.applthermaleng.2014.08.020. [百度学术]
WANG J, WU J, ZHENG C. Analysis of tri-generation system in combined cooling and heating mode[J]. Energy and Buildings, 2014, 72: 353. DOI: 10.1016/j.enbuild.2013.12.053. [百度学术]
张健,徐玉杰,李斌,等.分布式热电联产系统装机容量及运行策略分析[J].储能科学与技术, 2019, 8(1): 83. DOI: 10.12028/j.issn.2095-4239.2018.0190. [百度学术]
ZHANG Jian, XU Yujie, LI Bin, et al. Analysis of installed capacity and operation strategy for distributed combined heating and power systems[J]. Energy Storage Science and Technology, 2019, 8(1): 83. DOI: 10.12028/j.issn.2095-4239.2018.0190. [百度学术]
GHERSI D E, AMOURA M, LOUBAR K, et al. Multi-objective optimization of CCHP system with hybrid chiller under new electric load following operation strategy[J]. Energy, 2021, 219, 119574. DOI: 10.1016/j.energy.2020.119574. [百度学术]