摘要
采用高速相机对水滴撞击水膜的飞溅过程进行了详细测量,分析了水滴撞击水膜的飞溅临界值、二次液滴的直径分布和二次液滴的速率等飞溅特性。结果表明,在实验参数范围内,当韦伯数增大时发生飞溅现象。此外,可以使用量纲为一参数K 来描述飞溅临界值,K=We·O
在自然界和工业应用中,水滴撞击水膜都是一种常见的现象,其复杂的作用机理及相关过程的重要性引起了研究人员的关注。水滴撞击水膜的飞溅过程也一直被认为是飞机结冰过程中的一个重要过程,然而由于缺乏水滴撞击水膜飞溅特性的详细实验数据,目前用于飞机结冰模拟的飞溅模型没有考虑水滴撞击水膜的撞击过
多年来许多研究人员对液滴撞击液膜的过程进行了研究,以单液滴撞击为主,聚焦于颈部射流、冠状水花的形成机理、动力学特征、飞溅临界参数及二次液滴的预测等。例如,Cossali
迄今为止已经对液滴撞击液膜上的过程进行了大量研
本文通过高速相机研究了水滴撞击水膜的过程,分析了韦伯数、量纲为一参数K和液膜厚度等参数对飞溅临界值、二次液滴的直径分布、二次液滴的速度的影响。此外,把二次液滴分为2类,即由颈部射流产生的二次液滴和由冠状水花产生的二次液滴,分别对这2种二次液滴的速度进行了研究。目前的工作旨在增加对水滴撞击水膜过程的理解,并为研究人员开发更有效的用于飞机结冰模拟的飞溅模型提供有价值的数据。
研究装置示意图如
(1) |
式中: D 1为水滴竖直方向的长度;D2为水滴水平方向的长度。d 取2.70mm。在处理实验数据时,使用相邻2张图片初始水滴的位移除以2张图片的时间间隔(0.1ms),得到初始水滴的撞击速度。实验中空气温度保持在(20.0 ± 0.5) ℃,用于产生水滴和水膜的液体为去离子水,其密度ρ = 998 kg·m

图1 实验装置示意
Fig. 1 Sketch of experimental setup
影响水滴撞击水膜过程的主要量纲为一数为
(2) |
式中:ρ、μ 和 σ 分别表示液体密度、动力黏度和表面张力系数;V为初始水滴的撞击速率;We为韦伯数;Re为雷诺数;Oh为奥内佐格数;h为水膜厚度;
We | Re | Oh | K | |
---|---|---|---|---|
72~579 | 3 765~10 649 |
2.26× 1 | 0.19~0.93 | 828~6 621 |

图2 We = 362、K = 4 136、
Fig. 2 Sequence of images of water droplet impact process on a water film at We = 362, K= 4 136, and

图3 We = 579、K = 6 621、
Fig. 3 Sequence of images of water droplet impact process on a water film at We = 579, K= 6 621, and
时水滴撞击水膜的过程。与

图4 We = 579、K = 6 621、
Fig. 4 Sequence of images of water droplet impact process on a water film at We = 579, K= 6 621, and
当水滴以较高速率撞击水膜时,在水花的形成和扩展过程中会从边缘分离出小水滴,这种现象被定义为飞溅,可以从撞击后的图像确定飞溅是否发生。是否发生飞溅现象主要取决于惯性力和黏性力之间的平衡,主要受到雷诺数和韦伯数的影

图5 韦伯数、水膜量纲为一厚度和雷诺数对飞溅的影响
Fig. 5 Influence of Weber number, Reynolds number, and dimensionless film thickness on splashing
K是一个用来描述水滴撞击水膜过程的重要参数,可以用来判定水滴撞击水膜的过程中是否发生飞

图6 K和水膜量纲为一厚度对飞溅的影响
Fig. 6 Influence of K and dimensionless film thickness
二次液滴的直径分布是二次液滴特性的一个重要组成部分。使用ImageJ软件将高速相机得到的图像转化成黑白二值图像,然后识别并测量二次液滴的直径。费雷特直径是颗粒大小描述的常用参数,经过该颗粒的中心任意方向的直径称为一个费雷特直径。对二次液滴每隔10°方向取一个费雷特直径,用36个费雷特直径的平均值作为二次液滴的直径。
为了定量描述二次液滴直径随时间的变化,需要使用量纲为一时间 τ = t/(d/V)和二次液滴量纲为一直径

图7 不同量纲为一时间时二次液滴直径分布 (K=6 621,
Fig. 7 Histogram of secondary droplets diameter at different dimensionless times (K=6 621 and

图8 不同水膜量纲为一厚度时二次液滴直径分布 (K=6 621, τ= 1.0)
Fig. 8 Histogram of secondary droplets diameter at different dimensionless film thicknesses (K=6 621 and τ= 1.0)

图9 不同K值时二次液滴直径分布 (τ = 1.0,
Fig. 9 Histogram of secondary droplets diameter at different K values (τ = 1.0 and
水滴撞击水膜表面是一个非常复杂的过程,

图10 水滴撞击水膜过程示意
Fig. 10 Process of droplet splashing on a water film
二次液滴的量纲为一速率定义为

图11 二次液滴的速率测量示意
Fig. 11 Measurement of velocity of secondary droplets
水滴撞击水膜后,颈部射流产生的二次液滴的速率甚至能达到初始液滴撞击速率的10倍以
(3) |

图12 不同K和不同水膜量纲为一厚度下由颈部射流产生的二次液滴的量纲为一速率
Fig. 12 Dimensionless velocity of secondary droplets produced by ejecta sheet at different K values and dimensionless film thicknesses
(4) |

图13 不同K和不同水膜量纲为一厚度下由冠状水花产生的二次液滴的平均量纲为一速率
Fig. 13 Average dimensionless velocity of secondary droplets produced by crown splashing at different K values and dimensionless film thicknesses
冠状水花产生二次液滴的平均量纲为一速率随着K的增加而增加,随着水膜量纲为一厚度的增加而减少。Roisman
(5) |
使用高速相机对水滴撞击水膜的动力学过程进行了详细的测量,研究了飞溅临界值、二次液滴的直径分布、二次液滴的速率等飞溅特性。在实验参数范围内,韦伯数对飞溅现象有着重要影响,当韦伯数增大时发生飞溅现象。K 是一个非常重要的量纲为一参数,可用于表征水滴撞击水膜的结果,也可以使用 K 来描述飞溅临界值,当K值大于2 100时会发生飞溅现象。随着量纲为一时间的增加,二次液滴的量纲为一直径趋于增大。随着K值的增加,二次液滴的量纲为一直径增加,而水膜量纲为一厚度对二次液滴的直径分布影响不显著。由颈部射流产生二次液滴的量纲为一速率随着K 的增加而增加,水膜量纲为一厚度对这些二次液滴的量纲为一速率影响不明显。此外,由冠状水花产生二次液滴的平均量纲为一速率随着K的增加而增加,随着水膜量纲为一厚度的增加而减小。
作者贡献声明
周博通:实验、数据分析、撰写论文。
杨志刚:项目管理。
易 贤:制定研究方案。
杜雁霞:制定研究方案。
熊 兵:理论分析。
徐 毅:文献调研。
吴凌昊:开展实验不确定度分析。
金哲岩:论文整体规划及具体研究内容的工作安排、数据分析、审阅及修改论文。
参考文献
TAN C, PAPADAKIS M. Droplet breakup, splashing and re-impingement on an iced airfoil[C]// Proceedings of 4th AIAA Theoretical Fluid Mechanics Meeting and Exhibit. Toronto: AIAA, 2005: 5185-5202. [百度学术]
TAN S. Effects of large droplet dynamics on airfoil impingement characteristics[C]// Proceedings of 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2005: 74-86. [百度学术]
COSSALI G E, COGHE A, MARENGO M. The impact of a single drop on a wetted solid surface[J]. Experiments in Fluids, 1997,22(6): 463. [百度学术]
THORODDSEN S T. The ejecta sheet generated by the impact of a drop[J]. Journal of Fluid Mechanics, 2002,451: 373. [百度学术]
WANG A B, CHEN C C. Splashing impact of a single drop onto very thin liquid films[J]. Physics of Fluids, 2000,12(9): 2155. [百度学术]
RIOBOO R, BAUTHIER C, CONTI J, et al. Experimental investigation of splash and crown formation during single drop impact on wetted surfaces[J]. Experiments in Fluids, 2003,35(6): 648. [百度学术]
WAL R, BERGER G M, MOZES S D. Droplets splashing upon films of the same fluid of various depths[J]. Experiments in Fluids, 2006,40(1): 33. [百度学术]
OKAWA T, SHIRAISHI T, MORI T. Production of secondary drops during the single water drop impact onto a plane water surface[J]. Experiments in Fluids, 2006,41(6): 965. [百度学术]
DEEGAN R D, BRUNET P, EGGERS J. Complexities of splashing[J]. Nonlinearity, 2008,21(1): C1. [百度学术]
AGBAGLAH G, DEEGAN R D. Growth and instability of the liquid rim in the crown splash regime[J]. Journal of Fluid Mechanics, 2014,752(1): 485. [百度学术]
MOTZKUS C, GENSDARMES F, GÉHIN E. Study of the coalescence/splash threshold of droplet impact on liquid films and its relevance in assessing airborne particle release[J]. Journal of Colloid and Interface Science, 2011,362(2): 540. [百度学术]
JOSSERAND C, RAY P, ZALESKI S. Droplet impact on a thin liquid film: anatomy of the splash[J]. Journal of Fluid Mechanics, 2016,802: 775. [百度学术]
LI J, ZHANG H, LIU Q. Characteristics of secondary droplets produced by a single drop impacting on a static liquid film[J]. International Journal of Multiphase Flow, 2019,119: 42. [百度学术]
CEBECI T, KAFYEKE F. Aircraft icing[J]. Annual Review of Fluid Mechanics, 2003,35(1): 11. [百度学术]
HONSEK R, HABASHI W G, AUBE M S. Eulerian modeling of in-flight icing due to supercooled large droplets[J]. Journal of Aircraft, 2008,45(4): 1290. [百度学术]
BILODEAU D R, HABASHI W G, FOSSATI M, et al. Eulerian modeling of supercooled large droplet splashing and bouncing[J]. Journal of Aircraft, 2015,52(5): 1611. [百度学术]
STOW C D, HADFIELD M G. An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface[J]. Proceedings of the Royal Society A: Mathematical, 1981, 373(1755): 419. [百度学术]
RIOBOO R, MARENGO M, TROPEA C. Time evolution of liquid drop impact onto solid, dry surfaces[J]. Experiments in Fluids, 2002,33(1): 112. [百度学术]
JIN Z, SUI D, YANG Z. The impact, freezing, and melting processes of a water droplet on an inclined cold surface[J]. International Journal of Heat & Mass Transfer, 2015,90: 439. [百度学术]
JU J, YANG Z, YI X, et al. Experimental investigation of the impact and freezing processes of a hot water droplet on an ice surface[J]. Physics of Fluids, 2019,31(5): 57107. [百度学术]
YARIN A L. Drop impact dynamic: Splashing, spreading, receding, bouncing[J]. Annual Review of Fluid Mechanics, 2006,38: 159. [百度学术]
GUO Y, WEI L, LIANG G, et al. Simulation of droplet impact on liquid film with CLSVOF[J]. International Communications in Heat and Mass Transfer, 2014,53: 26. [百度学术]
LIANG G, MUDAWAR I. Review of mass and momentum interactions during drop impact on a liquid film[J]. International Journal of Heat and Mass Transfer, 2016,101: 577. [百度学术]
BURZYNSKI D A, ROISMAN I V, BANSMER S E. On the splashing of high-speed drops impacting a dry surface[J]. Journal of Fluid Mechanics, 2020,892: A2. [百度学术]
OKAWA T, KAWAI K, KUBO K, et al. Fundamental characteristics of secondary drops produced by early splash during single-drop impingement onto a thick liquid film[J]. Experimental Thermal and Fluid Science, 2021,131: 110533. [百度学术]
ROISMAN I V, HORVAT K, TROPEA C. Spray impact: rim transverse instability initiating fingering and splash, and description of a secondary spray[J]. Physics of Fluids, 2006,18(10): 102104. [百度学术]