摘要
为提升电渗处置的能量利用效率,开展了不同加载方式和加载电势梯度的室内电渗排水试验,分析了能耗系数和瞬时能耗系数随排水时间和含水率的变化规律,提出了低能耗的过湿土路基电渗排水逐级加载方法。结果表明:电渗过程中能耗系数呈现先下降后上升的趋势;瞬时能耗系数最低时的加载电势梯度与平均含水率负相关,两者为幂函数关系;以此幂函数关系确定最优加载电势梯度的低能耗加载方式,较1.2 V∙c
竣工运营后多雨潮湿地区公路路基的含水率会逐步提
Casagrand
然而,电势利用效率
开展不同加载方式和加载电势梯度的电渗室内试验,研究电渗能耗随排水时间和含水率的变化规律,提出瞬时能耗系数分析指标、最优能耗加载曲线和低能耗逐级加载方法,并通过试验比较低能耗逐级加载方法的节能效果。
试验采用低液限黏土,基本参数如
参数 | 数值 |
---|---|
天然含水率/% | 32.8 |
比重/% | 2.76 |
干密度/(g·c | 1.54 |
最佳含水率/% | 15.7 |
最大干密度/(g·c | 1.75 |
液限/% | 42.4 |
塑限/% | 20.7 |
土样分类 | 低液限黏土 |

图1 电渗排水室内试验装置
Fig.1 Indoor electroosmotic drainage test setup

图2 电极实物图
Fig.2 Physical drawings of electrodes
为探究不同加载方式和加载电势梯度下的电渗排水效果和能量消耗规律,参照现有研
分类 | 通电方式 | 电势梯度/(V∙c |
---|---|---|
试验1 | 逐级加压 | 0.4~1.2 |
试验2 | 稳压加载 | 0.4 |
试验3 | 稳压加载 | 0.8 |
试验4 | 稳压加载 | 1.2 |
试验5 | 稳压加载 | 0.6 |
试验6 | 稳压加载 | 1.6 |
试验的主要步骤为:先将土样碾碎烘干,根据试验方案称取适量烘干土样研细并加水,配置成相应的黏土并焖料24 h,保证试验前土体平均含水率在35%左右;称取制备好的土料,分5层分别加入模具中,按照90%压实度计算每一层土体所需体积和相应层高,利用夯锤将土体夯实至相应高度以保证压实度要求;在第1层土体填筑前,在土体两侧分别埋置阴阳电极,并在阴极内放入抽水泵;土体填筑完成后,用电线连接电源和电极,并将电能表工作端串联进电路内,将电势测针插入土体两侧的阴阳两极,在湿度测点放置湿度传感器;打开直流电源,接通电路,检查电源以及电能表、湿度传感器等测试设备,根据试验要求记录数据。
本试验探究不同加载方式和加载电势梯度下电渗过程中能量消耗的变化规律,因此以能量指标为分析重点。能耗是电渗过程中所消耗的电能。能耗系
(1) |
(2) |
(3) |
式中:为能耗,W∙h;为功率,W;为加载电压,V;为电流,A;为时间,h;为能耗系数,W∙h∙

图3 平均含水率随时间的变化
Fig.3 Variation of average water content with time

图4 电渗能耗随时间的变化
Fig.4 Variation of electroosmotic energy consumption with time

图5 电渗能耗系数随时间的变化
Fig.5 Variation of electroosmotic energy consumption coefficient with time

图6 电渗能耗系数随平均含水率的变化
Fig.6 Variation of electroosmotic energy consumption coefficient with average water content
对于逐级加载而言,由
为了探究电渗后期能耗系数上升的原因,对土体不同位置、不同时间的瞬时能耗系数进行分析。

图7 土体不同位置处的排水速率
Fig.7 Drainage rates at different locations of the soil

图8 土体不同位置处的瞬时能耗系数
Fig.8 Instantaneous energy consumption coefficients at different locations of the soil
由
加载电势梯度越高两极瞬时能耗系数之差越大。电势梯度为0.4 V∙c

图9 阳极附近土体与电极间的接触裂缝
Fig.9 Contact cracks between soil and electrodes near anode

图10 室内电渗试验过程的土体湿度
Fig.10 Soil moisture during indoor electroosmotic testing

图11 平均排水速率随时间的变化
Fig.11 Variation of average drainage rate with time

图12 平均瞬时能耗系数随时间的变化
Fig.12 Variation of average instantaneous energy consumption coefficient with time
电渗过程中平均瞬时能耗系数先降低后升高的变化特征,与水分迁移过程有关。电渗前期湿度从阳极处逐渐下降,并开始出现湿度梯度,此时部分电能转化为土体的土水势能,由于未产生整体的湿度下降,平均排水速率较低,导致试验开始时平均瞬时能耗系数较高。随着湿度梯度逐渐形成并稳定,平均排水速率逐渐上升,瞬时能耗系数逐渐下降。试验进行到后期,排水速率下降到较低水平,土体电阻逐渐上升,特别是阳极附近的电阻大大增加,瞬时能耗系数也逐渐变大。
瞬时能耗系数随时间的变化趋势表明,土体平均含水率显著影响该加载电势梯度下的瞬时能耗系数。为进一步分析瞬时能耗系数与土体平均含水率的关系,将0.4~1.6 V∙c

图13 不同电势梯度下平均瞬时能耗系数随平均含水率的变化
Fig.13 Variation of average instantaneous energy consumption coefficient with average water content at different potential gradients

图14 最优电势梯度与平均含水率的关系
Fig.14 Relationship between optimum potential gradient and average water content
为验证低能耗加载方法的效果,与稳压加载法和逐级加载法进行对比试验,方案如
试验编号 | 通电方式 | 电势梯度(V∙c |
---|---|---|
试验1 | 稳压加载 | 0.8 |
试验2 | 稳压加载 | 1.2 |
试验3 | 逐级加载 | 0.4~1.6 |
试验4 | 低能耗加载 | 初始0.4 |

图15 各加载方式下平均含水率与能耗的关系
Fig.15 Relationship between average water content and energy consumption under different loading modes

图16 各加载方式下平均含水率与电渗时间的关系
Fig.16 Relationship between average water content and testing time under different loading modes
(1)电渗过程中能耗系数先降低后上升,能耗系数最低时所对应的土体平均含水率与加载电势梯度负相关。加载电势梯度每增加0.4 V∙c
(2)电渗试验后期阳极瞬时能耗系数较大,约占总体的70%,而该区域的排水速率约占整体的30%,影响了整体的能源利用率和排水效率,不利于电渗排水的进行。
(3)电渗的平均瞬时能耗系数随着电渗的进行先降低后增加,加载电势梯度越大对应的最优能耗含水率越小,瞬时能耗系数最低时的加载电势梯度与平均含水率负相关,两者为幂函数关系。。
(4)基于最优能耗加载曲线的低能耗加载方法,较1.2 V∙c
作者贡献声明
钱劲松:试验设计,数据分析和论文修改。
杨以诚:室内试验,数据处理和论文撰写。
张 玉:图表处理,论文修改。
卢军源:数据分析。
参考文献
QUINTUS H V, KILLINGSWORTH B. Analysis relating to pavement material characterizations and their effects on pavement performance[R]. Washington DC: Transportation Research Board, 1998. [百度学术]
钱劲松,王朋,凌建明,等. 潮湿多雨地区高速公路路基湿度的实测特征[J].同济大学学报(自然科学版),2013,41(12):1812. [百度学术]
QIAN Jinsong, WANG Peng, LING Jianming, et al. In-situ investigation of subgrade moisture of expressway in humid zone[J]. Journal of Tongji University(Natural Science), 2013,41(12):1812. [百度学术]
李聪,凌建明,官盛飞. 基于路基湿度预估的综合湿度指数[J].同济大学学报(自然科学版),2012,40(11):1672. [百度学术]
LI Cong, LING Jianming, GUAN Shengfei. Prediction-based subgrade moisture thornthwaite moisture index[J]. Journal of Tongji University(Natural Science),2012,40(11):1672. [百度学术]
BRIAUD J, SAEZ D. Soil compaction: recent developments[C]//International Conference on Ground Improvement & Ground Control. Wollongong: University of Wollongong, 2012:3-30. [百度学术]
李冬雪,凌建明,钱劲松,等. 湿度循环下黏质土路基回弹模量演化规律[J].同济大学学报(自然科学版),2013,41(7):1051. [百度学术]
LI Dongxue, LING Jianming, QIAN Jinsong, et al. Influence of moisture content change cyclicity on modulus evolution law of cohesive subgrade soil[J]. Journal of Tongji University(Natural Science),2013,41(7):1051. [百度学术]
MITCHELL J K, SOGA K. Fundamentals of soil behavior[M]. New York: John Wiley & Sons, 2005. [百度学术]
赵鸿铎,朱兴一,涂辉招,等. 智能铺面的内涵与架构[J]. 同济大学学报(自然科学版),2017,45(8):1131. [百度学术]
ZHAO Hongduo, ZHU Xingyi, TU Huizhao, et al. Concept and framework of smart pavement[J]. Journal of Tongji University(Natural Science), 2017,45(8):1131. [百度学术]
赵鸿铎.智能铺面技术新进展[M]. 北京:人民交通出版社, 2019. [百度学术]
ZHAO Hongduo. State-of-the-art and future perspectives of smart pavement[M]. Beijing: China Communications Press, 2019. [百度学术]
CASAGRANDE L. Stabilization of soils by means of electro-osmosis state of the art[J]. Journal of the Boston Society of Civil Engineers Section, 1983,69:255. [百度学术]
WANG S D, ZHANG L H, WU H J, et al. Research on over-wet subgrade filler treatment by electro-osmosis in rainy and moist areas[J]. Journal of Wuhan University of Technology, 2009,31(8):63. [百度学术]
王甦达,张林洪,吴华金,等. 电渗法处理过湿土填料中有关参数设计的探讨[J]. 岩土工程学报, 2010(2):211. [百度学术]
WANG Suda, ZHANG Linhong, WU Huajin, et al. Parameter design of over-wet soil fill treated by electro-osmosis. [J]. Chinese Journal of Geotechnical Engineering, 2010(2):211. [百度学术]
曹怀长. 电势作用下重塑黄土水分迁移问题研究[D]. 西安:西安建筑科技大学, 2017. [百度学术]
CAO Huaizhang. Study of remolded loess moisture migration under the action of electric potential[D]. Xi’an: Xi’an University of Architecture and Technology, 2017. [百度学术]
LING J, LI X, QIAN J, et al. Performance comparison of different electrode materials for electro-osmosis treatment on subgrade soil[J]. Construction and Building Materials, 2020, 271:121590. [百度学术]
TANG K, ZHANG F, FENG D, et al. Moisture migration and electric distribution of unsaturated clay under electro-osmosis with carbon fiber tape as electrode[J]. Engineering Geology, 2021, 294:106404. [百度学术]
陈卓. 通电设计对电渗加固软土效果的试验研究[D]. 杭州:浙江大学, 2013. [百度学术]
CHEN Zhuo. Experimental research on the effect of electricity design to electro-osmotic consolidation of soft clay[D]. Hangzhou: Zhejiang University, 2013. [百度学术]
朱俊霖. 提高电渗法能量利用率的实用技术研究[J]. 土工基础, 2017(4):472. [百度学术]
ZHU Junlin. Improving the energy utilization rate in the practical application of electro-osmosis[J]. Soil Engineering and Foundation, 2017(4):472. [百度学术]
KALUMBA D, GLENDINNING S, ROGERS C, et al. Dewatering of tunneling slurry waste using electrokinetic geosynthetics[J]. Journal of Environmental Engineering, 2009, 135(11):1227. [百度学术]
庄艳峰,王钊.电渗固结中的界面电阻问题[J].岩土力学,2004(1):117. [百度学术]
ZHUANG Yanfeng, WANG Zhao. Study on interface electric resistance of electro-osmotic consolidation[J]. Rock and Soil Mechanics,2004(1):117. [百度学术]
陶燕丽,周建,龚晓南. 电极材料对电渗过程作用机理的试验研究[J]. 浙江大学学报(工学版),2014,48(9):1618. [百度学术]
TAO Yanli, ZHOU Jian, GONG Xiaonan. Experimental study on function mechanism of electrode materials upon electro-osmotic process[J]. Journal of Zhejiang University (Engineering Science),2014,48(9):1618. [百度学术]
李卓明. 电渗固结中接触电阻影响因素的试验研究[D]. 杭州:浙江大学, 2017. [百度学术]
LI Zhuoming. Experimental study on the influencing factors of the contact resistance on electro-osmotic consolidation[D]. Hangzhou: Zhejiang University, 2017. [百度学术]
郑凌逶,谢新宇,谢康和,等. 电渗法加固地基试验及应用研究进展[J]. 浙江大学学报(工学版),2017,51(6):1064. [百度学术]
ZHENG Lingwei, XIE Xinyu, XIE Kanghe, et al. Test and application research advance on foundation reinforcement by electro-osmosis method[J]. Journal of Zhejiang University (Engineering Science),2017,51(6):1064. [百度学术]
MICIC S, SHANG J Q, LO K Y, et al. Electrokinetic strengthening of a marine sediment using intermittent current[J]. Canadian Geotechnical Journal, 2001, 38(2): 287. [百度学术]
焦丹,龚晓南,李瑛. 电渗法加固软土地基试验研究[J]. 岩石力学与工程学报, 2011, 30(S1): 3208. [百度学术]
JIAO Dan, GONG Xiaonan, LI Ying. Experimental study of consolidation of soft clay using electro-osmosis method[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1): 3208. [百度学术]
陈卓,周建,温晓贵,等. 电极反转对电渗加固效果的试验研究[J]. 浙江大学学报(工学版),2013,47(9):1579. [百度学术]
CHEN Zhuo, ZHOU Jian, WEN Xiaogui, et al. Experimental research on effect of polarity reversal to electro-osmotic[J]. Journal of Zhejiang University (Engineering Science), 2013,47(9):1579. [百度学术]
KARUNARATNE G P. Prefabricated and electrical vertical drains for consolidation of soft clay[J]. Geotextiles and Geomembranes, 2011, 29(4): 391. [百度学术]
刘飞禹,宓炜,王军,等.逐级加载电压对电渗加固吹填土的影响[J].岩石力学与工程学报,2014,33(12):2582. [百度学术]
LIU Feiyu, MI Wei, WANG Jun, et al. Influence of applying stepped voltage in electro-osmotic reinforcement of dredger fill [J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(12): 2582. [百度学术]
潘冬庆,张建忠,张赤宇. 降低电渗能量消耗的理论与试验研究[J].低温建筑技术,2014,36(3):123. [百度学术]
PAN Dongqing, ZHANG Jianzhong, ZHANG Chiyu. Theoretical and experimental research on reducing energy consumption of electroosmosis [J].Low Temperature Architecture Technology,2014,36(3):123. [百度学术]
陶燕丽.不同电极电渗过程比较及基于电导率电渗排水量计算方法[D]. 杭州:浙江大学,2015. [百度学术]
TAO Yanli. Electro-osmotic process under different electrode materials and a novel method for discharge calculation based on electrical conductivity[D]. Hangzhou: Zhejiang University, 2015. [百度学术]
李瑛,龚晓南,张雪婵.电压对一维电渗排水影响的试验研究[J].岩土力学,2011,32(3):709. [百度学术]
LI Ying, GONG Xiaonan, ZHANG Xuechan. Experimental research on effect of applied voltage on one-dimensional electroosmotic drainage[J]. Rock and Soil Mechanics,2011,32(3):709. [百度学术]
XUE Z, TANG X, YANG Q, et al. Comparison of electro-osmosis experiments on marine sludge with different electrode materials[J]. Drying Technology, 2015, 33(8):986. [百度学术]