网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

盾构隧道管片结构承载能力评估方法研究  PDF

  • 张力
  • 封坤
  • 梁晓明
  • 连正洲
  • 刘伊腾
  • 张景轩
西南交通大学,交通隧道工程教育部重点实验室,四川 成都 610031

中图分类号: U451+.4

最近更新:2023-09-18

DOI:10.11908/j.issn.0253-374x.23216

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

承载性能是盾构隧道管片衬砌结构重要的力学特性之一,其准确评估是保障结构受力安全的关键,然而目前尚无成熟的评价方法。首先基于管片衬砌结构中管片和管片接头的受力及变形特征,建立了基于管片承载力和管片接头承载力的管片衬砌结构承载性能评估方法,提出了管片衬砌结构承载性能评估指标,然后分别开展了单环和组合环管片衬砌结构破坏加载原型试验对所提出的方法进行检验,最后结合现场实测对实际工程中管片衬砌结构的承载状态进行了定量评估和分析。研究结果表明:单环结构破坏试验中,管片接头破坏现象更为明显,其先于管片达到抗弯承载力极限值,组合环结构破坏试验中,管片破坏现象更为明显,其先于管片接头达到抗弯承载力极限值;单环和组合环管片结构试验中,结构破坏与理论计算方法中管片或接头达到承载力极限的荷载一致,表明所提出的结构承载状态评估方法是合理的;所选取监测断面管片结构中管片和接头的承载安全系数分别为4.27和4.86,可见其承载状态良好。该研究方法和结论可为类似盾构隧道管片结构承载安全评估提供重要支撑。

随着盾构法隧道建设技术的提升和工程需求的增加,体积大型化和结构体系复杂化成为装配式管片衬砌的主要发展方

1-3,使得大直径和超大直径管片衬砌与地铁等中小直径管片衬砌的承载性能存在一定区别,其主要原因在于:一方面随着管片衬砌直径的增大,结构型式趋于薄型化而厚径比持续减4-5,结构承载性能可能发生显著变化;另一方面随着结构体系的复杂化,管片接头数量增多,而管片接头是整个结构体系中的薄弱部6,结构承载性能受管片接头的影响将增大。可见,随着装配式管片衬砌的发展,衬砌结构的承载安全存在诸多影响因素和不确定性,因此亟需提出一套与之相适应的管片衬砌结构承载性能评估方法,为确保其承载安全提供支撑。

目前,管片衬砌结构承载性能的研究主要可分为结构变形控制指标和结构受力与破坏特征两方面,在结构变形控制指标研究方面,相关学者通过理论推导、数值模拟和现场实测等方法开展了大量研究,如:刘学增

7建立了管片衬砌结构三维数值模型分析了破碎围岩中直径为6.7 m的错缝拼装衬砌结构的承载性能和变形控制指标,分别提出了不同荷载工况和结构安全等级下衬砌结构椭圆度的控制值;王志良[8基于弹性极限曲率理论,根据管片截面受力和横向变形之间的关系得到了管片衬砌结构收敛变形的限值,并结合某地铁隧道收敛变形的实测数据进行对比分析得出所提出的限值可以较好地反映管片衬砌结构的承载状。王如路9分析了地面压载、侧向压力系数和抗力系数对隧道横向变形发展的影响,提出了以隧道直径变化作为隧道横向结构性态发展的指标对隧道变形状态和结构安全进行简单而有效的判断。可见,基于结构变形判定管片衬砌结构承载性能的方法简单实用,但也可能存在如下两方面的问题:①基于结构变形限制值往往是定值,可能因无法较好地适应断面大小或荷载形式的变化而过于保守;②结构宏观变形限制值不能很好地反映管片裂损以及接头等局部的承载状态,从而难以准确反映结构局部失效的情况。因此,也有学者认为应从结构受力与承载的关系出发对管片衬砌结构承载性能进行分析,如柳献10针对某地铁隧道开展了原型加载试验分析单环和多环管片衬砌结构破坏特征,提出以塑性铰为判断标准分析结构承载性能,并认为当衬砌结构形成多个塑性铰或者单个塑性铰完全失效时结构将丧失承载能力;董新11-12通过理论推导分别建立了管片破坏指数与接头破坏指数两个评估指标,对原型试验中整环管片衬砌结构的承载力丧失过程进行了分析,并得出多个塑性铰形成后整环衬砌结构将逐步丧失承载力的结论。可见,基于结构内力对于管片衬砌结构承载性能进行评估的方法是可行的,其判断标准可根据管片和管片接头自身的构造和特征出发,能更好地适应断面和荷载的变化。

鉴于此,本文从结构受力角度出发建立了一套管片衬砌结构承载性能评估方法,并结合超大直径原型管片衬砌结构破坏加载试验和现场监测试验对管片衬砌结构的承载状态评估和承载安全分析进行了深入研究。

1 管片结构承载能力评估方法

盾构隧道管片衬砌结构一般由若干块管片拼装而成,是典型的多体结构,管片与管片之间通过螺栓连接,螺栓连接区域为管片接头,如图1所示。管片是管片衬砌结构的承载主体和主要的组成部分,而管片接头是管片衬砌结构的薄弱部分和核心承载区域,其主要作用为降低管片衬砌结构整体刚度、通过释放结构变形而减小结构内力,其失去承载能力将直接影响管片衬砌结构的承载安全。

图1  盾构隧道管片衬砌结构形式

Fig. 1  Structural form of segment lining structure of shield tunnel

水土压力作用下,管片衬砌结构的变形模式以弯曲变形为主(图2),管片和接头处均处于压弯受荷状态。当管片受力较为不利时,管片受拉侧将产生裂纹,裂纹数量、宽度和深度随弯矩增大而不断发展,此时管片承载能力将逐步降低;当管片接头受力较为不利时,接头受拉侧张开、受压侧闭合,接缝受压侧随着弯矩增大逐渐压紧、产生裂纹并压溃,伴随着变形和破坏的发生,管片接头承载性能也逐步降低。因此,对于受荷弯曲变形的管片衬砌结构,管片和管片接头的承载性能将不同程度下降,在研究管片衬砌结构承载性能时必须同时考虑管片和管片接头的承载状态。钢筋混凝土管片一般配有足量钢筋,因而具有较大承载能力,同时管片弯曲刚度较大,其所受弯矩一般相对更大;管片接头的承载能力虽小于管片,但由于管片接头是不连续结构,其抗弯刚度一般相对较小,因此所受弯矩也相对较小。可见,管片虽承载能力强但所受弯矩大,管片接头虽承载能力弱但所受弯矩小,二者承载状态的好坏无明确定论,需视具体情况而定。

图2  水土压力下管片衬砌变形模式

Fig. 2  Deformation mode of segment lining structure at water and soil pressure

管片和管片接头的组成与构造存在差异,导致其破坏模式和破坏特征均不同,因此其承载状态好坏无法直接比较,考虑到二者同样受压弯荷载,且二者的破坏状态分别对应着不同弯矩和轴力的组合,因此,基于二者受力模式的相似性,考虑从结构受力角度建立统一的承载能力评估指标。

1.1 管片抗弯承载力

轴力和弯矩作用下,管片主要承载部位为受压侧混凝土和环向主筋,取管片上某一截面进行受力分析,力学模式如图3所示,可见管片抗弯承载力学模型与钢筋混凝土偏心受压构件正截面承载力模型一致,由于混凝土应力分布具有非线性特征,在进行抗弯承载力求解时,一般将混凝土应力等效为均匀分布。

图3  压弯荷载下管片受力模式

Fig. 3  Stress mode of segment under compression- bending loads

图3中,N为管片轴力、M为管片极限弯矩,fc为混凝土抗压强度,c为受压区高度,σc为受压侧钢筋应力,Ac为受压侧钢筋面积,σt为受拉侧钢筋应力,At为受拉侧钢筋面积,α为混凝土应力等效系数,β为受压区高度等效系数,dc为受压侧主筋到受压区外侧的距离,dt为受拉侧主筋到受压区外侧的距离。根据图3所示的力学模式,建立管片抗弯承载力计算模

13-14,如式(1)所示:

N-αfcbβc-σcAc+σtAt=0M-αfcbβc(dt-βc2)-σcAc(dt-dc)=0 (1)

1.2 管片接头抗弯承载力

轴力和弯矩作用下,管片接头的主要承载部位为受压侧混凝土和连接螺栓,其中受压侧混凝土应力分布因接缝面特殊构造而不连续,且连接螺栓只能受拉,据此得到管片接头的抗弯力学模型,如图4所示。

图4  压弯荷载下管片接头受力模式

Fig. 4  Stress mode of segmental joint at compression- bending loads

其中,n为螺栓个数,fs为螺栓应力,d为螺栓直径,θ为螺栓与水平方向夹角,b为管片幅宽,σ(ε)为混凝土应力‒应变函数;h为接头厚度;x为受压区高度;ds为螺栓作用点距受压区顶端的距离。据此根据接缝面受力平衡关系,可建立管片接头抗弯承载力计算模型,如式(2)所示。模型求解可参照2.1节中管片抗弯承载力的求解方式,首先得到混凝土应变和螺栓应变的关系,然后根据螺栓受力状态分情况进行求解,值得注意的是,由于接缝面的不连续构造,计算混凝土反力时采用混凝土应力分布简

15和直接积16求解时复杂度相近,而直接积分求解一般具有更高的计算精度。

N+14nπfsd2cosθ-bi=1ndidi+1σ(pxεu)dp=0M-bi=1ndidi+1σ(pxεu)(h-x+p)dp++14nπfsd2cosθ(h-ds)+Nh2=0 (2)

1.3 评估方法与指标

根据1.1节和1.2节所建立的管片和管片接头抗弯承载力模型,可分别得到管片和管片接头抗弯承载力曲线,二者共同构成管片衬砌结构的抗弯承载特征曲线,如图5所示。相同偏心距下,管片的抗弯承载力一般远大于管片接头的抗弯承载力,可见管片接头是管片衬砌结构的薄弱部分。

图5  管片衬砌结构抗弯承载力特征曲线

Fig. 5  Characteristic curves of compression- bending capacity of segment lining structure

某一压弯荷载下,管片或管片接头的内力组合为(MN),结合所得到的抗弯承载力曲线(以下简称为“曲线”)进行分析,当内力组合超出曲线时则认为其丧失承载能力,因此内力组合(MN)在曲线和坐标轴形成包络区域内的位置将决定管片或管片接头的承载状态,而内力组合(MN)在曲线中的相对位置可以用其到曲线的距离描述。当加载存在特定路径(等轴力路径、等弯矩路径和等偏心距路径等)时,结构剩余承载能力为点(MN)沿该路径到曲线的距离;当加载不存在特定路径时,偏于安全地将点(MN)到曲线的最小距离作为其剩余承载力。

由于管片和管片接头的抗弯承载力曲线存在较大差异,因此将内力组合(MN)到曲线的距离作为其承载性能的评估标准可能不利于管片与管片接头之间承载性能的相互比较,为此建立剩余承载力系数R这一管片或管片接头承载性能评估指标,其定义为内力组合(MN)到曲线的距离与原点—(MN)—(MiNi)折线的长度之比(其中(MiNi)为抗弯承载力曲线上的点),如式(3)所示:

R=(M-Mi)2+(N-Ni)2M2+N2+(M-Mi)2+(N-Ni)2 (3)

对于某一管片截面或管片接头,剩余承载力系数R的最大值为1,最小值为0,其值越大表明其剩余承载性能越好。而对于整环管片衬砌结构,管片(或管片接头)的剩余承载力系数即为所有管片截面(或管片接头)剩余承载力系数的最小值,整环管片衬砌结构的剩余承载力系数为管片与管片接头剩余承载力系数之间的较小者。

2 原型管片结构试验的应用

2.1 工程背景

依托工程为目前穿越长江断面最大的盾构隧道工程,管片衬砌外径为15.5 m,属于超大直径盾构隧道,隧道全长6 408 m,盾构段长度4 947 m。隧道穿越地层主要为粉质黏土层、粉细砂层等透水性地层,局部穿越淤泥质软弱土层等地质。隧址区河床地势起伏变化急剧,河床冲刷深度大,最大冲刷深度达6.7 m,受长江深槽影响,隧道承受最大水压达0.824 MPa,最大覆土厚度约50 m。

管片衬砌结构内径为14.2 m,衬砌厚度为0.65 m,管片平均幅宽为2 m,分块形式为“7(标准块)+2(邻接块)+1(封顶块)”,封顶块、邻接块和标准块对应分块角度分别为11.67°、39.17°和38.57°,管片分块如图6所示,混凝土强度等级为C60。每个管片接头处由3根8.8级M36斜螺栓连接。

图6  管片衬砌结构分块示意图

Fig. 6  Segmentation diagram of segment lining structure

2.2 试验概况

由于本工程主要处于砂质地层中,因此应按照水土荷载分离的方式进行加

17,试验中通过等效荷载的方式进行加载,将水压力等效为环箍荷载、土压力等效为对拉荷载(P1为主对拉,P2为副对拉),如图7所示。该等效方法由何川18提出,并已成功在多座大断面、超大断面管片衬砌结构原型加载试验中应用。

图7  原型试验荷载施加方法

Fig. 7  Loading method of prototype failure tests of segment lining structure

单环和多环管片衬砌结构破坏试验管片布置情况如图8所示。单环管片衬砌结构试验中,研究对象为一整环管片衬砌结构,封顶块F与邻接块L2的管片接头位于拱顶。多环管片衬砌结构试验中,研究对象为一整环和两个半环管片衬砌结构,其中整环管片封顶块F和邻接块L1的管片接头位于拱顶,两个半环位于整环结构两侧,通过纵向螺栓与整环结构连接,并与整环结构形成180°错缝角度。

图8  单环与组合环结构试验现场布置情况

Fig. 8  On-site arrangements of prototype failure test of STRS and STGS

单环和组合环管片衬砌破坏试验均在水压为0.824 MPa条件下进行,即试验中保持水压不变,通过不断增大主、副对拉荷载直到管片衬砌结构发生破坏,副对拉荷载与主对拉荷载之比保持为0.5。

管片衬砌结构的内力无法直接测量,需在管片内、外弧面对应位置粘贴混凝土应变片,试验中管片内、外弧面沿环周各均匀布置了28列混凝土应变片,如图9所示。根据管片内、外弧面对应位置处的的混凝土应变,通过力学方法可换算得到管片的轴力和弯矩。

图9  混凝土应变计布置方式

Fig. 9  Arrangement scheme of concrete strain gauges

2.3 结构破坏特征分析

单环管片衬砌结构的破坏情况如下:B4块管片内弧面形成8条沿幅宽方向贯通的主裂纹,裂纹最大宽度约为0.42 mm,F-L2接缝接缝外缘出现严重压溃破坏现象,如图10所示。接缝外缘接触后产生多条可见裂纹,最大宽度接近3 mm,该接缝外缘L2侧以及外弧面出现明显混凝土剥落现象和压溃现象,接缝内缘张开明显,最大张开量为14.617 mm,最大张开高度为430 mm,F-L2接缝核心承压区高度仅为10 cm。

图10  单环管片衬砌结构主要破坏现象

Fig. 10  Failure phenomena of STRS

组合环管片衬砌结构的破坏情况如下:中间目标环B4块管片内弧面产生了大量的可见裂纹,如图11所示,其中贯通裂纹条数均为13条,最大裂纹宽度分别为3.81 mm;中间目标环F-L1接缝外缘两侧混凝土已完全接触并产生了两条垂直于缝面的裂纹,接缝外缘未出现明显的压溃现象,但该接缝的核心承压区上侧出现了一定的压溃现象。

图11  组合环试验中间环管片衬砌结构主要破坏现象

Fig. 11  Failure phenomena of STGS

单环结构试验中,管片接头处出现了严重的压溃现象而管片上虽出现了一定的裂纹,但裂纹的宽度和数量均较小,可见接头破坏程度相较于管片更为严重,可能先于管片达到承载力极限。多环结构试验中管片裂纹宽度和数量均较大,其破坏现象相较于管片接头更为明显,表明管片可能先于管片达到承载力极限状态。

2.4 结构破坏变形指标分析

目前对于管片衬砌结构承载性能的评估主要是基于管片变形量和接缝张开量,如《盾构隧道工程设计标准(GB/T 51438—2021)

19中对于管片衬砌结构直径变化率λ的规定为:λ≤2 ‰(错缝拼装)或λ≤3 ‰(通缝拼装),且λD≤50 mm(D为管片外径,下同);对于大断面或位于软土地层盾构隧道管片接头张开量δ的规定为:δ≤4 mm。《盾构法隧道施工及验收规范(GB 50466—2017)20中对于管片衬砌结构变形后椭圆度(即变形后管片衬砌长轴与短轴的长度之差)的规定为±6 ‰D。《地铁设计规范(GB 50157—2013)21中对于管片衬砌结构直径变化率λ的规定为:λ≤3 ‰~4 ‰,对于管片接头张开量δ的规定为δ≤3 mm。可见,管片直径变化率、管片椭圆度和管片接头张开量是较为常用的评价指标,本节将根据单环和组合环管片衬砌试验中管片和接头的变形结果计算上述三项指标,如表1所示。

表1  原型破坏加载试验变形指标
Tab. 1  Deformation index of prototype failure loading test
变形指标单环破坏试验组合环破坏试验
直径变化率/‰ 7.741 9.674
椭圆度/‰ 13.636 15.992
最大接头张开量/mm 14.617 13.311

表1可知,单环和组合环试验中,管片衬砌结构破坏时的直径变化率、椭圆度和最大接缝张开量均远超规范限值,一方面表明在规范限值下管片衬砌结构的承载性能较好,具有足够的承载余量;另一方面,既有规范中管片和接头变形限制可能对于依托工程或类似工程的管片衬砌结构而言可能过于保守,不利于充分利用结构承载性能,因此有必要在现有规范限值的基础上进一步研究和明确“高水压”和“断面超大”等特殊条件下的结构承载状态。

3 评估方法的验证

为验证所提出评估方法的合理性,结合原型管片衬砌结构破坏试验中管片和管片接头的抗弯承载力曲线和内力数据进行分析,具体如下。依托工程管片衬砌结构的截面配筋情况如图12所示。

图12  管片配筋情况(单位:mm)

Fig. 12  Reinforcement of segment (unit: mm)

钢筋型号为HRB400(屈服强度标准值400 MPa,极限强度标准值540 MPa),管片外侧保护层厚度为50 mm,管片内侧保护层厚度为40 mm。

管片接头的细部尺寸如图13所示,结合2.2节所示的接头抗弯承载力计算方法,可得本工程管片接头抗弯承载力曲线。

图13  管片接头接缝面构造尺寸(单位:mm)

Fig. 13  Detailed dimensions of segmental joint (unit: mm)

将单环结构和组合环结构试验中结构破坏时所得管片和管片接头的内力数据分别代入1.3节中所得到的抗弯承载力曲线中以分析管片衬砌结构的承载性能。单环试验中结构破坏时管片衬砌结构的承载情况分别如图14所示,组合环试验中结构破坏时作用下管片衬砌结构的承载情况分别如图15所示。

图14  单环试验中管片和管片接头承载情况(P1=3 308 kN)

Fig. 14  Bearing states of segment and segmental joint in failure test of STRS at P1=3 308 kN

图15  组合环试验中管片和管片接头承载情况(P1=2 977 kN)

Fig. 15  Bearing states of segment and segmental joint in failure test of STGS at P1=2 977 kN

单环破坏试验中,当结构破坏时,被置于受力较为不利区域的管片接头其受力已超出抗弯承载力曲线,而此时管片受力距其抗弯承载力曲线还有一定距离,表明管片接头先于管片发生破坏,与试验破坏现象一致。组合环试验中,在破坏荷载作用下,管片受力组合已超出其抗弯承载力曲线,表明部分管片截面已基本丧失承载能力,而管片接头内力组合仍处于抗弯承载力曲线包络范围内,表明管片接头承载仍具有一定的安全余量,与试验破坏现象相符。

综合以上分析可知,当管片或管片接头内力接近抗弯承载力曲线时,管片或管片接头将发生明显的破坏现象,这表明第1节中的抗弯承载力计算方法与试验结果较为相符,同时采用抗弯承载力的方法来评估管片衬砌结构的承载性能是合理的。

4 实际工作状态的校核

为评估实际工程中管片衬砌结构的承载工作状态,针对江阴靖江长将隧道水压最大断面(最大设计水压0.824 MPa)开展结构受力现场测试,监测断面位置如图16所示。

图16  现场测试监测断面位置

Fig. 16  Position of monitoring section in on-site test

现场测试中管片内力通过在管片内部预埋混凝土应变计进行测量,如图17a所示,管片浇筑之前将混凝土应变计沿环向固定在钢筋上,每一个管片截面内外侧主筋对应位置各布置一个,全环共布置19个管片截面,如图17b所示,管片结构轴力和弯矩可通过内侧外混凝土应变计的测试换算得到。接头内力的获取则是管片拼装完成尚未脱环时在各个接缝内侧布置接缝计(图17c)和螺栓测力计(图17d),得到接缝内侧张开量和螺栓拉力,通过与接头三维数值模型计算结果进行比

22,反演分析得到接头轴力和弯矩。将现场测试中所得到的管片和接头处的轴力和弯矩代入第4节的管片和接头的抗弯承载力曲线中,如图18所示。

图17  现场测试中管片及接头内力的测试方法

Fig. 17  Measurement method for internal force of segment and segmental joint in on-site test

图18  测试断面管片与接头承载情况

Fig. 18  The bearing states of segment and segmental joint of the monitoring section

图18可以得出,该监测断面管片的承载安全系数为4.27,而接头的承载安全系数为4.86,由此可确定管片整体结构的承载安全系数为管片和接头承载安全系数中的较小者,即4.27,可见实际工程中该断面管片结构的承载工作状态良好。

5 结语

本文提出了同时考虑管片承载力和管片接头承载力的管片衬砌结构承载性能评估方法与评估指标,并开展原型管片衬砌结构破坏试验对所提出的评估方法的合理性进行检证,基于所提出的方法结合管片结构受力现场实测数据对实际工程中管片衬砌结构的承载状态进行了评估,主要得到如下结论:

(1)单环结构破坏试验中,管片接头破坏现象更为明显,其先于管片超出抗弯承载力曲线包络范围,而组合环结构破坏试验中,管片的破坏现象更为明显,其先于管片接头超出抗弯承载力曲线包络范围,表明所提出的管片衬砌结构承载性能评估方法是合理的。

(2)组合环结构的中间目标环与单环结构的布置一致,但最终破坏时组合环结构中间目标环的管片接头未发现明显地破坏现象,表明采用错缝拼装形式在一定程度上可减小管片接头的受力和变形。

(3)实际工程中所选取监测断面管片结构的承载安全系数为4.27,表明其承载状态良好。

作者贡献声明

张 力:建立管片结构承载能力评估方法、开展原型结构试验和现场测试试验。

封 坤:提出研究思路、指导开展试验。

梁晓明:协助开展原型试验和数据处理工作。

连正洲:协助开展原型试验和论文图片绘制。

刘伊腾:协助现场测试试验和数据处理工作。

张景轩:协助开展现场测试试验。

参考文献

1

何川封坤. 大断面盾构隧道结构整体化分析方法[J]. 隧道建设(中英文)20214111): 1827. [百度学术] 

HE ChuanFENG Kun. Integrated analysis method for shield tunnel structure with large cross-section[J]. Tunnel Construction20214111): 1827. [百度学术] 

2

何川张志强肖明清. 水下隧道[M]. 成都西南交通大学出版社2011. [百度学术] 

HE ChuanZHANG ZhiqiangXIAO Mingqing. Underwater tunnel [M]. ChengduSouthwest Jiaotong University Press2011. [百度学术] 

3

何川封坤. 大型水下盾构隧道结构研究现状与展望[J]. 西南交通大学学报20111):1. [百度学术] 

HE ChuanFENG Kun. Review and prospect of structure research of underwater shield tunnel with large cross-section [J]. Journal of Southwest Jiaotong University20111):1. [百度学术] 

4

肖明清. 我国水下盾构隧道代表性工程与发展趋势[J].隧道建设2018383): 360. [百度学术] 

XIAO Mingqing. Representative projects and development trend of underwater shield tunnels in China[J]. Tunnel Construction2018383): 360. [百度学术] 

5

孙恒冯亚丽. 全球超大直径隧道掘进机数据统计[J]. 隧道建设(中英文)2020406): 921. [百度学术] 

SUN HengFENG Yali. Statistics on global super-large diameter tunnel boring machines[J]. Tunnel Construction2020406): 921. [百度学术] 

6

封坤. 大断面水下盾构隧道管片衬砌结构的力学行为研究[D]. 成都西南交通大学2011. [百度学术] 

FENG Kun. Research on mechanical behavior of segmental lining structure for underwater shield tunnel with large cross-section[D]. ChengduSouthwest Jiaotong University2011. [百度学术] 

7

刘学增蔡光远杨帆. 破碎围岩错缝拼装盾构隧道结构承载性能与变形控制指标[J].中国公路学报2017308):57. [百度学术] 

LIU XuezengCAI GuangyuanYANG Fan. Structural bearing behavior and deformation controlling indictators for straggered jointed shield tunnel lining in fractured surrounding rock[J]. China Journal of Highway and Transport2017308) :57. [百度学术] 

8

王志良申林方刘国彬. 基于弹性极限理论的盾构隧道收敛变形研究[J]. 铁道学报2012342): 100. [百度学术] 

WANG ZhiliangSHEN LinfangLIU Guobinet al. Research on convergence deformation of shield tunnel with elastic limit theory[J]. Journal of the China Railway Society2012342): 100. [百度学术] 

9

王如路张冬梅. 超载作用下软土盾构隧道横向变形机理及控制指标研究[J]. 岩土工程学报2013356): 1092. [百度学术] 

WANG RuluZHANG Dongmei. Mechanism of transverse deformation and assessment index for shield tunnels in soft clay under surface surcharge[J]. Chinese Journal of Geotechnical Engineering2013356): 1092. [百度学术] 

10

柳献张雨蒙王如路. 地铁盾构隧道衬砌结构变形及破坏探讨[J]. 土木工程学报2020535): 118. [百度学术] 

LIU XianZHANG YumengWANG Rulu. Discussion on deformation and failure of segmental metro tunnel linings[J]. China Civil Engineering Journal2020535): 118. [百度学术] 

11

董新平. 盾构衬砌整环破坏机理研究[J]. 岩土工程学报2014363): 417. [百度学术] 

DONG Xinping. Failure mechanism of the full-ring for segmented tunnel lining[J]. Chinese Journal of Geotechnical Engineering2014363): 417. [百度学术] 

12

董新平. 盾构衬砌单环破坏历程的增量法解析解[J]. 岩土工程学报2015371): 119. [百度学术] 

DONG Xinping. Incremental analytical solution for failure history of a single ring of segmented tunnel lining[J]. Chinese Journal of Geotechnical Engineering2015371): 119. [百度学术] 

13

PARK RPAULAY TReinforced Concrete Structures[M]. New YorkJohn Wiley & Sons1975. [百度学术] 

14

袁锦根余志武. 混凝土结构设计基本原理[M]. 北京中国铁道出版社2007. [百度学术] 

YUAN JingenYU Zhiwu. Basic principles of concrete structure design [M]. BeijingChina Railway Publishing House2007. [百度学术] 

15

肖明清封坤张力. 盾构隧道管片接头抗弯承载力计算模型研究[J]. 土木工程学报20195211): 108. [百度学术] 

XIAO MingqingFENG KunZHANG Li. A calculation model of flexural bearing capacity of segmental joint for shield tunnels [J]. China Civil Engineering Journal20195211): 108. [百度学术] 

16

ZHANG LiFENG KunLI Maoranet al. Analytical method regarding compression - bending capacity of segmental joints: Theoretical model and verification[J]. Tunnelling and Underground Space Technology201993103083. [百度学术] 

17

小泉淳. 盾构隧道管片设计:从容许应力设计法到极限状态设计法[M]. 官林星 译. 北京中国建筑工业出版社2012. [百度学术] 

KOIZUMI Atsushi. Segment design of shield tunnel: From allowable stress design method to limit state design method[M]. Translated by GUAN Linxing. BeijingChina Architecture & Building Press2012. [百度学术] 

18

何川封坤苏宗贤. 大断面水下盾构隧道原型结构加载试验系统的研发与应用[J].岩石力学与工程学报2011302), 254. [百度学术] 

HE ChuanFENG KunSU Zongxian. Development and application of loading test system of prototype structure for underwater shield tunnel with large cross-section[J]. Chinese Journal of Rock Mechanics and Engineering2011302): 254. [百度学术] 

19

中华人民共和国住房和城乡建设部. 盾构隧道工程设计标准GB/T 51438一2021 [S]. 北京中国建筑工业出版社2021. [百度学术] 

Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for design of shield tunnel engineeringGB/T 51438一2021[S]. BeijingChina Architecture & Building Press2021. [百度学术] 

20

中华人民共和国住房和城乡建设部. 盾构法隧道施工及验收规范GB 50446一2017 [S]. 北京中国建筑工业出版社2017. [百度学术] 

Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for construction acceptance of shield tunnelling methodGB 50446—2017[S]. BeijingChina Architecture & Building Press2017. [百度学术] 

21

中华人民共和国住房和城乡建设部. 地铁设计规范GB 50157一2013 [S]. 北京中国建筑工业出版社2013. [百度学术] 

Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Codes for design of metroGB 50157—2013 [S]. BeijingChina Architecture & Building Press2013. [百度学术] 

22

ZHANG LiFENG KunHE Chuan. Numerical investigation of the compression–bending stiffness of segmental joints with different types of joint surfaces [J]. Tunnelling and Underground Space Technology2023132104898. [百度学术]