摘要
针对我国东南沿海地区4个使用不同类型二次消毒剂(氯、氯胺、二氧化氯)的局部管网水样的中三卤甲烷(THMs)、卤乙酸(HAAs)、卤乙腈(HANs)的分布特征及影响因素进行了分析。结果表明,3座城市DBPs的超标风险整体较低,采集的117份水样中有10份水样THMs超过国标限值,其余DBPs均符合标准。以氯为消毒剂的管网水样中THMs浓度和HANs浓度远高于其他管网,以二氧化氯为消毒剂可以减少消毒副产物THMs的生成,但以氯胺为消毒剂的上海地区HAAs浓度较高,是其他3个系统的5~19倍,可能与原水中HAAs前体物含量较高有关。在SH-NH₂Cl系统中,消毒剂浓度与输配距离成反比(r = -0.57),同时该系统中硝酸盐、亚硝酸盐及氨氮浓度也随距离变化,说明饮用水在管网输送过程中余氯被逐渐消耗,同时管网中发生了硝化反应,氨氮被氧化为亚硝酸盐和硝酸盐。WJ-Cl2系统中DBPs与输配距离相关,HANs浓度沿程减少(r = -0.49),HAAs浓度沿程增加(r = 0.45)。此外,建筑管网中长停滞时间也会影响水样理化指标。该研究揭示了不同类型二次消毒剂的管网水中DBPs浓度水平和变化规律,研究结果可为不同地区水质安全评价和风险控制提供依据。
消毒剂的使用可抑制水中微生物尤其是病原菌的生长,保障居民饮用水安全。然而,消毒剂的投加会引起消毒副产物(DBPs)的生成,对人类健康具有潜在危害,长期暴露存在致癌等风险。DBPs的种类繁多,常见的DBPs有三卤甲烷(THMs)、卤乙酸(HAAs)、卤乙腈(HANs)等等,包括我国在内的多个国家已经将THMs和HAAs列入饮用水卫生标准,常规指标中对4种常见THMs和2种常见HAAs 有明确浓度限值要求(GB5749-2022)。
近年来,HANs等含氮DBPs(N-DBPs)也引起公众的关注,一般而言,N-DBPs在饮用水中的浓度较低,但具有更高的细胞毒性和遗传毒
目前,氯消毒是我国饮用水系统应用最为广泛的消毒策
杭州某水厂将水源从钱塘江切换为千岛湖外调水源后,饮用水中消毒副产物的构成特征明显变化, DBPs总量削减32.02%
此外,供水管网的使用年
本文以我国东南沿海3座城市的供水管网为研究对象,考察采用不同类型二次消毒剂(secondary disinfectant)的管网水中3类典型DBPs(THMs、HAAs、HANs)的发生规律和分布特征,探索消毒剂残余量、输配距离、停滞时间、水化学组分等因素与DBPs发生规律的关联性。研究结果可为不同水质地区DBPs的风险评估和管控提供数据参考。
选取位于WJ(氯,以下简称WJ-Cl2)、SZ(氯,SZ-Cl2;二氧化氯,SZ-ClO2)和SH(氯胺,SH-NH₂Cl)三座城市采用不同类型二次消毒剂的四个局部管网为研究对象,分别于2019年7月、9月和2020年8月进行水样采集。根据采样点到给水厂距离远近对主干管网沿程进行水样采集,共获取水样117份,其中主管网水样44份,龙头水73份。
根据《生活饮用水标准检验方法:水样的采集与保存》(GB/T 5750.2-2006)进行水样采集。主管网水样通过两种方式采集:①消防栓:冲水10 min,余氯稳定后采
利用SevenGo Duo便携式多参数测试仪对水样的温度、pH和电导率进行测定,利用浊度仪(哈希HACH 2100Q)测定浊度。采用分光光度法(HACH DR1900)检测余氯、总氯和二氧化氯的浓度,采用HACH法测定氨氮浓度(NO.8155),采用离子色谱法(883 Basic IC plus 1)测定硝酸盐和亚硝酸盐浓度。
测定的DBPs包括三氯甲烷(TCM)、一溴二氯甲烷(BDCM)、二溴一氯甲烷(DBCM)和三溴甲烷(TBM);二氯乙腈(DCAN)、溴氯乙腈(BCAN)、二溴乙腈(DBAN)和三氯乙腈(TCAN);以及氯乙酸(MCAA)、一溴乙酸(MBAA)、二氯乙酸(DCAA)、三氯乙酸(TCAA)、溴氯乙酸(BCAA)、一溴二氯乙酸(BDCAA)、二溴乙酸(DBAA)、二溴一氯乙酸(CDBAA)、三溴乙酸(TBAA)。参照《生活饮用水标准检验方法:消毒副产物指标》(GB/T 5750.10-2006)利用气相色谱质谱联用仪(Atomx 7890B+5977B)对DBPs进行定量。吹扫捕集仪结合GC-MS进行THMs浓度测定,实验采用60m×0.25mm DB-VRX熔融石英毛细柱,柱温程序:40℃保持1 min;以20℃·mi
4个供水系统管网共采集117个水样,其常规理化指标如
供水系统 | 水温/(℃) | pH | 浊度/ (NTU) | TOC/ (mg· |
---|---|---|---|---|
SZ-ClO2 | 29.1 ± 1.3 | 7.60±0.31 | 0.40±1.03 | 0.52±0.58 |
SZ-Cl2 | 30.1 ± 1.1 | 7.68±0.28 | 0.25±0.35 | 1.56±1.80 |
WJ-Cl2 | 30.2 ± 1.5 | 7.31±0.70 | 1.16±3.84 | 4.60±6.75 |
SH-NH₂Cl | 31.8 ± 0.9 | 7.26±0.21 | 0.11±0.03 | 1.38±0.15 |

图1 4个供水管网饮用水中DBPs的分布特征
Fig 1 Characteristics of DBPs in four drinkingwater distribution systems
现行国标中规定,各种THMs浓度与标准的比值之和不超过1,如下:
(1) |
式中: BDCM为一溴二氯甲烷浓度、DBCM为二溴一氯甲烷浓度、TBM为三溴甲烷浓度、TCM为三氯甲烷浓度,分母为国标中对应THMs限值,μg·
本文中10个水样超过国标限值,其中8个水样来自WJ-Cl2系统,2个来自SZ-Cl2系统。这一结果与2010―2011年深圳市饮用水消毒副产物评估中THMs的合格率87.5%水平接
Cl2> SZ-ClO2,平均值分别为8.13 ± 4.04 μg·
4个供水系统水样中HAAs的总含量在7.65~965.95 ng·
多个研究表明,以氯胺为消毒剂可以有效降低HAAs的生
如

图2 4个供水系统中理化指标、DBPs和输配距离的相关性分析
Fig.2 Correlation analysis of physicochemical parameters, DPBS and distribution distance in four drinking water distribution systems
只有WJ-Cl2系统中DBPs与输配距离有显著相关性(P<0.05),这可能是因为WJ地区采样点较多,输配距离较长。WJ-Cl2系统中HAAs浓度沿程增加(r = 0.45,P<0.05),这表明水力停留时间的增加会导致HAAs生成的增多,与前人对管网中HAAs浓度调查的研究结果一
龙头水的平均消毒剂浓度为0.12 mg·
龙头水的平均浊度为1.43 NTU,显著高于管网水(0.31 NTU,P<0.05),约22.7%龙头水浊度超过现行国标的限制(1 NTU)。其中,WJ-Cl2系统某龙头水浊度高达29.2 NTU,但经过最大流速放水5min后可降至合格范围内。对浙江省绍兴市某小区的水质监测中同样存在龙头水浊度水质较管网略有下降的情
因假期、疫情封控等原因,饮用水可能在管道中滞留较长时间,本文对比分析了WJ-Cl2系统中存在较长停滞时间的用水建筑龙头水(主要为暑假中的中、小学,样品数n=32)和正常用水建筑中龙头水DBPs的浓度水平(n=15)。
结果表明长停滞时间龙头水(龙头未使用时间>50 d)样品余氯浓度为0.04 ± 0.03 mg·
在合肥市科学岛自来水的检测中发现,自来水在水管内存储时间越长,卤代烃类DBPs浓度越
DBPs平均浓度 | 长停滞时间龙头水 | 正常使用龙头水 |
---|---|---|
TCAN/(μg· | 1.00 | 0.52 |
DCAN/(μg· | 1.89 | 2.05 |
BCAN/(μg· | 3.36 | 4.44 |
DBAN/(μg· | 1.10 | 1.17 |
HANs/(μg· | 7.35 | 8.18 |
TCM/(μg· | 17.36 | 19.84 |
BDCM/(μg· | 15.51 | 18.68 |
DBCM/(μg· | 12.99 | 15.52 |
TBM/(μg· | 7.19 | 8.13 |
THMs/(μg· | 53.05 | 57.94 |
MCAA/(ng· | 15.51 | 27.44 |
MBAA/(ng· | 3.19 | 6.06 |
DCAA/(ng· | 0.78 | 1.09 |
TCAA/(ng· | 0.70 | 0.81 |
BCAA/(ng· | 1.53 | 1.54 |
BDCAA/(ng· | 0.84 | 0.87 |
DBAA/(ng· | 0.91 | 1.02 |
CDBAA/(ng· | 2.34 | 2.51 |
TBAA/(ng· | 1.02 | 1.06 |
HAAs/(ng· | 26.81 | 42.40 |
注: 标有*的DBPs P<0.05
在SH-NH₂Cl系统中,HAAs与消毒剂浓度成正相关(P<0.05)。Hong等人的研究也发现,在反应温度为20℃、反应时间为24 h的情况下,HAAs浓度随消毒剂剂量增加呈上升趋
DBPs和其他理化参数的相关性分析见

图3 供水管网中水质参数与DBPs的相关性分析(P<0.05)
Fig.3 Correlation analysis of water quality index and DBPs in drinking water distribution systems(P<0.05)
结果表明: HAAs的形成与温度成正相关(r = 0.46)。温度升高,分子运动加快反应速率提升,一定程度有利于DPBs的生成。对长三角部分水源水消毒后HAAs形成影响因素研究也表明,HAAs的形成与温度成正相
例如,研究发现HANs与温度成负相关(r = -0.32,P<0.05),可能与较高的温度下HANs的分解有
本文调查了采用不同类型二次消毒剂的4个供水管网(SH-NH₂Cl、SZ-Cl2、SZ-ClO2和WJ-Cl2)中的4种THMs、9种HAAs、4种HANs的分布特征和影响因素。结果表明,以氯为消毒剂的供水系统水样中THMs浓度远高于使用氯胺和二氧化氯的系统;WJ- Cl2系统HANs浓度较高;而HAAs在以氯胺为消毒剂的SH- NH₂Cl 系统最高。
结果表明,不同供水管网DPBs的发生规律存在差异,不同类型二次消毒剂的使用以及原水水质可能带来不同的DPBs生成风险。
在SH-NH₂Cl系统中,消毒剂浓度与距离成反比,氨氮浓度沿程减少,硝酸盐和亚硝酸盐沿程增加,这可能与管网中硝化反应有关。WJ-Cl2系统中HANs浓度随输配距离的增加而减少,而HAAs浓度沿程增加,这可能与管网中余氯降解、微生物活性以及DBPs本身稳定性有关。此外,龙头水和长停滞时间水样中易出现浊度超标消毒剂浓度不足的情况。为保证管网末梢余氯达标,应考虑提高消毒剂投加或管网水补氯。
相关性分析表明,DBPs浓度受温度、pH、硝酸盐浓度、消毒剂种类和浓度等多种因素影响。为了确保饮用水安全,需要进一步解析DBPs生成的机制和影响因素。同时,采取切实有效的措施,包括提升源头水水质、选择合适的消毒剂、控制消毒剂投加量、关注管网的运行状况、并定期监测管网末梢以及长时间不使用建筑的水质,有效减少DBPs的生成和暴露风险,保障公众健康。
作者贡献声明
王虹:论文的构思者与负责人,指导实验开展、论文修改。
於文萱:负责试验设计与实施,完成数据分析与初稿写作;
胡宇星:负责试验设计与实施;
蔡栩丞:参与试验结果分析与论文修改;
庞维海:参与试验设计与论文修改。
参考文献
唐凤霞, 李婉婷, 朱延平, 等. 饮用水中卤乙腈和亚硝胺类含氮消毒副产物的管控及在我国典型城市的检测水平研究进展 [J]. 给水排水, 2022, 58(5): 15. [百度学术]
TANG Fengxia, LI Wanting, ZHU Yanping, et al. Research progress on the control of halogenated acetonitrile and nitrosamines disinfection byproducts in drinking water and their detection in typical cities in China[J]. Water & Wastewater Engineering,2022,58(5):15. [百度学术]
翟家欣, 张欣然, 杨欣. 新型含氮消毒副产物的生成机制及毒性研究进展 [J]. 生态毒理学报, 2020, 15(1): 17. [百度学术]
ZHAI Jiaxin, ZHANG Xinran, YANG Xin. Research overview on formation mechanism and toxicity for emerging nitrogenous disinfection byproducts[J]. Asian Journal of Ecotoxicology, 2020, 15(1): 17. [百度学术]
江钆泓, 毕然, 杜家豫, 等. 基于不同水厂水质调查的消毒副产物生成趋势及模型预测 [J]. 环境工程学报, 2022, 16(2): 515. [百度学术]
JIANG Gahong, BI Ran, DU Jiayu, et al. Disinfection by-products formation and model prediction based on water quality surveys of different drinking water treatment plants[J]. Chinese Journal of Environmental Engineering, 2022, 16(2): 515. [百度学术]
张琦, 陈国良, 熊传龙. 典型村镇水厂复合二氧化氯饮用水消毒效果及副产物调查 [J]. 环境与健康杂志, 2017, 34(5): 412. [百度学术]
ZHANG Q, CHEN G L, XIONG C L. Disinfection effects and disinfection byproducts investigation of complex chlorine dioxide generators for typical rural drinking water supply[J]. Journal of Environment and Health, 2017, 34(5): 412. [百度学术]
GAGNON G, VOLK C J, CHAURET C, et al. Changes in microbiological quality in model distribution systems after switching from chlorine or chloramines to chlorine dioxide [J]. Journal of Water Supply: Research and Technology-Aqua, 2006, 55(5): 301. [百度学术]
楚文海, 肖融, 丁顺克, 等. 饮用水中的消毒副产物及其控制策略 [J]. 环境科学, 2021, 42(11): 5059. [百度学术]
CHU Wenhai, XIAO Rrong, DING Shunke, et al. Disinfection by-products in drinking water and their control strategies: a review[J].Environmental Science, 2021, 42(11): 5059. [百度学术]
苏乐, 朱延平, 舒诗湖, 等. 管网输配系统中消毒副产物生成及控制技术研究 [J]. 中国给水排水, 2022, 38(14): 42. [百度学术]
SU Le, ZHU Yanping, SHU Shihu, et al. Research on generation and control technology of disinfection by-products in pipeline distribution system[J]. China Water & Wastewater, 2022, 38(14): 42. [百度学术]
项硕, 王磊, 王红, 等. 杭州市水源切换对饮用水中DBPs分布影响及其健康风险评价 [J]. 环境科学学报, 2022, 42(2): 195. [百度学术]
XIANG Shuo, WANG Lei, WANG Hong, et al. Occurrence of disinfection by-products in tap water and the relevant health risk evaluation affected by water source switching in Hangzhou City[J]. Acta Scientiae Circumstantiae, 2022, 42(2): 195. [百度学术]
KURAJICA L, UJEVIĆ BOŠNJAK M, NOVAK STANKOV M, et al. Disinfection by-products in Croatian drinking water supplies with special emphasis on the water supply network in the city of Zagreb [J]. Journal of Environmental Management, 2020, 276: 111360. [百度学术]
CHEN H, WEI Z, SUN G, et al. Formation of biofilms from new pipelines at both ends of the drinking water distribution system and comparison of disinfection by-products formation potential [J]. Environmental Research, 2020, 182: 109150. [百度学术]
QI P, LI T, HU C, et al. Effects of cast iron pipe corrosion on nitrogenous disinfection by-products formation in drinking water distribution systems via interaction among iron particles, biofilms, and chlorine [J]. Chemosphere, 2022, 292: 133364. [百度学术]
SHI X, CLARK G G, HUANG C, et al. Chlorine decay and disinfection by-products formation during chlorination of biofilms formed with simulated drinking water containing corrosion inhibitors [J]. Science of The Total Environment, 2022, 815: 152763. [百度学术]
LYTLE D A, SORG T J, MUHLEN C, et al. Particulate arsenic release in a drinking water distribution system [J]. Journal AWWA, 2010, 102(3): 87. [百度学术]
LIU B, RECKHOW D A. Disparity in disinfection byproducts concentration between hot and cold tap water [J]. Water Research, 2015, 70: 196. [百度学术]
CHARISIADIS P, ANDRA S S, MAKRIS K C, et al. Spatial and seasonal variability of tap water disinfection by-products within distribution pipe networks [J]. Science of The Total Environment, 2015, 506: 26. [百度学术]
ZHOU X, ZHENG L, CHEN S, et al. Factors influencing DBPs occurrence in tap water of Jinhua Region in Zhejiang Province, China [J]. Ecotoxicology and Environmental Safety, 2019, 171: 813. [百度学术]
刘书敏, 赵风斌. 长江口水源地青草沙水库水质与浮游植物群落特征 [J]. 环境污染与防治, 2022, 44(10): 1330. [百度学术]
LIU Shumin, ZHAO Fengbin. Water quality and phytoplankton community characteristics of a water source in Yangtze Estuary, Qingcaosha Reservoir[J]. Environmental Pollution & Control, 2022, 44(10): 1330. [百度学术]
胡起靖. 2011—2020年太湖水质分析及综合评价研究 [J]. 汕头大学学报(自然科学版), 2022, 37(1): 65. [百度学术]
HU Qijing. Analysis and comprehensive evaluation of water quality in Taihu Lake from 2011 to 2020 [J]. Journal of Shantou University(Natural Science Edition), 2022, 37(1): 65. [百度学术]
梁栋, 宗栋良. 深圳西丽水库水质研究 [J]. 环境科学与技术, 2013, 36(S1): 315. [百度学术]
LIANG Dong, ZONG Dongliang. Study on the water quality of Shenzhen Xili Reservoir[J]. Environmental Science &Technology, 2013,36(S1): 315. [百度学术]
甄伟前, 焦佳佳, 李忠禹, 等. 城乡供水管网中消毒副产物的浓度水平与分布规律 [J]. 环境科学学报, 2023, 43(3): 186. [百度学术]
ZHEN Weiqian, JIAO Jiajia, LI Zhongyu, et al. Occurrence and variability of disinfection byproducts in a centralized water distribution system in urban and rural communities[J]. Acta Scientiae Circumstantiae, 2023, 43(3): 186. [百度学术]
MAZHAR M A, KHAN N A, AHMED S, et al. Chlorination disinfection by-products in municipal drinking water – A review [J]. Journal of Cleaner Production, 2020, 273: 123159. [百度学术]
ZHONG Y, GAN W, DU Y, et al. Disinfection byproducts and their toxicity in wastewater effluents treated by the mixing oxidant of ClO2/Cl2 [J]. Water Research, 2019, 162: 471. [百度学术]
周国宏, 余淑苑, 彭朝琼, 等. 深圳市饮用水中消毒副产物三卤甲烷的健康风险评价 [J]. 环境与健康杂志, 2013, 30(8): 718. [百度学术]
ZHOU Ghuohong, YU Shuyuan, PENG Chaoqiong, et al. Health risk assessment of trihalomethanes in drinking water in Shenzhen[J]. Journal of Environment and Health, 2013, 30(8): 718. [百度学术]
KRASNER S W, WEINBERG H S, RICHARDSON S D, et al. Occurrence of a new generation of disinfection byproducts [J]. Environmental Science & Technology, 2006, 40(23): 7175. [百度学术]
BOND T, TEMPLETON M R, MOKHTAR KAMAL N H, et al. Nitrogenous disinfection byproducts in English drinking water supply systems: Occurrence, bromine substitution and correlation analysis [J]. Water Research, 2015, 85: 85. [百度学术]
MALLIAROU E, COLLINS C, GRAHAM N, et al. Haloacetic acids in drinking water in the United Kingdom [J]. Water Research, 2005, 39(12): 2722. [百度学术]
林佳佳, 李籽桥, 姚秋如, 等. 氯、氯胺消毒下钱江源水源水消毒副产物形成特征研究 [J]. 环境科学学报, 2018, 38(8): 3027. [百度学术]
LIN Jiajia, LI Ziqiao, YAO Qiuru, et al. Formation of disinfection by-products upon chlorination /chloramination of Qianjiang source water[J]. Acta Scientiae Circumstantiae, 2018, 38(8): 3027. [百度学术]
易欣源, 曲鑫璐, 龙昕, 等. 饮用水中典型消毒副产物的化学特性、生成转化及毒性研究进展 [J]. 生态毒理学报, 2023, 18(2): 97. [百度学术]
YI Xinyuan, QU Xinlu, LONG Xing, et al. Research progress on chemical properties, transformation and toxicity of typical disinfection byproducts in drinking water [J]. Asian Journal of Ecotoxicology, 2023, 18(2): 97 [百度学术]
区良益, 王晓, 钟宁, 等. 饮用水氯和氯胺消毒过程中卤乙酸生成势的比较 [J]. 中国给水排水, 2018, 34(5): 15. [百度学术]
OU Liangyi , WANG Xiao, ZHONG Ning, et al. Comparison of haloacetic acids formation potential between chlorine and chloramine disinfection process in drinking water treatment[J]. China Water & Wastewater, 2018, 34(5): 15. [百度学术]
HONG H, XIONG Y, RUAN M, et al. Factors affecting THMs, HAAs and HNMs formation of Jin Lan Reservoir water exposed to chlorine and monochloramine [J]. The Science of the Total Environment, 2013, 444: 196. [百度学术]
GRUNERT A, FROHNERT A, SELINKA H C , et al. A new approach to testing the efficacy of drinking water disinfectants [J]. International Journal of Hygiene and Environmental Health, 2018, 221(8): 1124. [百度学术]
刘正辉, 李德豪. 氨氧化古菌及其对氮循环贡献的研究进展 [J]. 微生物学通报, 2015, 42(4): 774. [百度学术]
LIU Zhenghui, LI Dehao. Ammonia-oxidizing archaea and their contribution to global nitrogen cycling: a review[J]. Microbiology China, 2015, 42(4): 774. [百度学术]
YANG H, QI S, YAN Y. Influencing factors of biofilm nitrification in long-distance water pipeline [J]. IOP Conference Series: Earth and Environmental Science, 2021, 702(1): 012057. [百度学术]
ZHENG S, LI J, YE C, et al. Microbiological risks increased by ammonia-oxidizing bacteria under global warming: the neglected issue in chloraminated drinking water distribution system [J]. Science of The Total Environment, 2023, 874: 162353. [百度学术]
ZHANG X L, YANG H W, WANG X M, et al. Formation of disinfection by-products: effect of temperature and kinetic modeling [J]. Chemosphere, 2013, 90(2): 634. [百度学术]
BAYTAK D, SOFUOGLU A, INAL F, et al. Seasonal variation in drinking water concentrations of disinfection by-products in IZMIR and associated human health risks [J]. Science of The Total Environment, 2008, 407(1): 286. [百度学术]
周晓燕, 任峰, 沈雁, 等. 基于饮用水终端用户的管网水质调查及影响因素分析 [J]. 给水排水, 2019, 55(8): 118. [百度学术]
ZHOU XIAOYAN, REN FENG, SHEN YAN, et al. Investigation of water quality and analysis of influencing factors in water distribution networks based on drinking water end-users[J]. Water & Wastewater Engineering, 2019, 55(8): 118. [百度学术]
牛佳, 黄怡婷, 许薇, 等. 水滞留影响下不同供水末端的微生物群落对比 [J]. 中国给水排水, 2022, 38(5): 14. [百度学术]
NIU JIA, HUANG YITING, XU WEI, et al. Comparison of microbial communities in different manners of tap water supply as affected by water stagnation[J]. China Water & Wastewater, 2022, 38(5): 14. [百度学术]
康萌, 邹雪, 曹京昊, 等. 采用固相微萃取-气相色谱三重四极杆质谱对自来水中卤代烃类消毒副产物的检测 [J]. 大气与环境光学学报, 2017, 12(4): 276. [百度学术]
KANG Meng, ZOU Xue, CAO Jinghao, et al. Detection of disinfection by-products in tap water by solid phase microextraction gas chromatography triple quadrupole mass spectrometry[J]. Journal of Atmospheric and Environmental Optics, 2017, 12(4): 276. [百度学术]
景澍闽, 陆志惠, 叶秋明, 等. 上海市二次供水水质状况的调查与研究 [J]. 城镇供水, 2017(1): 73. [百度学术]
JING Shumin, LU Zhihui, YE Qiumin, et al. Investigation and research on the quality of secondary water supply in Shanghai [J]. City and Town Water Supply, 2017 (1): 73. [百度学术]
GLEZER V, HARRIS B, TAL N, et al. Hydrolysis of haloacetonitriles: linear free energy relationship, kinetics and products [J]. Water Research, 1999, 33(8): 1938. [百度学术]
ZHANG P, LAPARA T M, GOSLAN E H, et al. Biodegradation of haloacetic acids by bacterial isolates and enrichment cultures from drinking water systems [J]. Environmental Science & Technology, 2009, 43(9): 3169. [百度学术]
HONG H, XIONG Y, RUAN M, et al. Factors affecting THMs, HAAs and HNMs formation of Jin Lan Reservoir water exposed to chlorine and monochloramine [J]. Science of the Total Environment, 2013, 444: 196. [百度学术]
宋倩云, 宁萍, 孙洪杰, 等. 长三角部分水源水氯化消毒后卤乙酸形成的多元回归模型研究 [J]. 环境科学学报, 2017, 37(6): 2048. [百度学术]
SONG Qianyun, NING Ping, SUN Hongjie, et al. Regression models of HAAs formation upon chlorination of source water collected from Yangtze River Delta[J]. Acta Scientiae Circumstantiae, 2017, 37(6): 2048. [百度学术]
CAO Y, HU S, GONG T, et al. Decomposition of β-N-methylamino-L-alanine (BMAA) and 2,4-diaminobutyric acid (DAB) during chlorination and consequent disinfection byproducts formation [J]. Water Research, 2019, 159: 365. [百度学术]