摘要
采用简单的多级搅拌方法,利用AgCl对金属有机框架(MOF)光催化剂(MIL-100(Fe))进行改性。利用X射线衍射仪(XRD)和傅里叶红外光谱仪(FT-IR)等表征手段,证明了新型异质结材料(AgCl/MIL-100(Fe))的成功制备。以磺胺假二嘧啶(SMZ)作为目标污染物,考察了催化剂投量、污染物浓度和pH等因素对光催化去除效果的影响,并初步探讨了SMZ的降解机理和路径。结果表明,异质结的成功构建更合理的利用了光生电子(
抗生素是一类广泛分布在水生环境中的有机污染物,对人类健康和整个生态系统的稳定性构成越来越大的潜在风
基于半导体材料的光催化高级氧化技术被广泛应用于污染物降解,具有高效、简单、绿色等优
实验材料:均苯三甲酸、氯化钠、氢氧化钠、对苯醌,由上海阿拉丁生化科技股份有限公司提供;硝酸银、氯化铁四水合物、异丙醇、草酸钠、重铬酸钾,由上海国药集团化学试剂有限公司提供。所有药品均为分析纯,无需进一步纯化。
实验仪器:FA1204N型电子分析天平,上海精其仪器有限公司;HJ-3型恒温磁力搅拌器,常州国华电器有限公司;PHS-3C型精密pH计,上海雷磁有限公司;Smartlab SE型X射线衍射仪(XRD),日本Rigaku公司;Nicolet iS20傅里叶变换红外光谱仪(FT-IR),美国Nicolet公司;Verios G4型超高分辨率场发射扫描电镜(UFSEM),美国FEI公司;Genesis XM型能谱仪(EDS),美国EDAX公司;UV-3 600i Plus型紫外-可见分光光度计(UV-vis),日本岛津公司;ZS90型纳米粒径电位分析仪,英国马尔文公司;LC-2030型高效液相色谱仪(HPLC),日本岛津公司;1100 LC/MSD Trap XCT液相色谱/质谱仪(HPLC-MS),美国安捷伦公司。
如

图1 MIL-100(Fe)和AgCl/MIL-100(Fe)的合成过程
Fig.1 Synthesis process of MIL-100(Fe) and AgCl/MIL-100(Fe)
光催化降解SMZ实验在光催化仪器(DY-D型,上海德洋意邦仪器有限公司)中进行,配备8个100 mL的石英玻璃管、冷阱和冷却水循环系统。带有400 nm截止滤光片的钨灯(500W,荷兰皇家飞利浦公司)作为可见光光源,光照强度为100 mW·c
MIL-100(Fe)和AgCl/MIL-100(Fe)的晶体结构由XRD光谱进行表征。如

图2 MIL-100(Fe)和AgCl/MIL-100(Fe)的XRD图谱
Fig.2 XRD patterns of MIL-100(Fe) and AgCl/MIL-100(Fe)
利用FT-IR光谱对MIL-100(Fe)和AgCl/MIL-100(Fe)的官能团进行了检测。如

图3 MIL-100(Fe)、AgCl/MIL-100(Fe)的FT-IR谱图
Fig.3 FT-IR spectra of MIL-100(Fe) an AgCl/MIL-100(Fe)
利用了UFSEM对所制备的AgCl/MIL-100(Fe)的微观形貌进行观测。如

图4 AgCl/MIL-100(Fe)的SEM和TEM
Fig.4 SEM and TEM images of MIL-100(Fe) and AgCl/MIL-100(Fe)

图5 AgCl/MIL-100(Fe)的EDS图
Fig 5 EDS image of AgCl/MIL-100(Fe)
利用UV-vis漫反射光谱研究了AgCl、MIL-100(Fe)和AgCl/MIL-100(Fe)的光学性质。由

图6 MIL-100(Fe)和AgCl/MIL-100(Fe)的UV-vis光谱图
Fig.6 UV-vis spectra of MIL-100(Fe) and AgCl/MIL-100(Fe)
比较了不同光催化剂种类的SMZ去除性能。由

图7 不同光催化剂对SMZ的去除效果
Fig.7 The removal ratio of SMZ with different photocatalysts
如

图8 不同SMZ浓度、催化剂投量和pH对SMZ的去除效果的影响
Fig.8 Effects of different SMZ concentrations, catalyst dosage and pH on the removal of SMZ
当光催化剂投加量在0.1~0.5 g·
考察了不同初始pH条件下,AgCl/MIL-100(Fe)对SMZ的光催化去除效果。如
为了充分考察所制备的光催化剂在实际水处理工艺中的应用潜力,必须充分考虑其可重复使用性。如

图9 光催化剂的循环利用率
Fig.9 Photocatalyst reuse efficiency
利用对苯醌、草酸钠、异丙醇和重铬酸钾对•O

图10 淬灭实验和AgCl/MIL-100(Fe)异质结结构
Fig.10 Quenching experiment and AgCl/MIL-100(Fe) heterojunction structure
通过HPLC-MS分析对AgCl/MIL-100(Fe)光催化降解SMZ过程中产生的中间产物进行鉴定,收集到的产物结构和推测的降解路径如

图11 推测的SMZ的光催化降解路径
Fig.11 The proposed photocatalytic degradation pathway of SMZ
•OH和
成功制备了改性MOF光催化材料,应用于水中SMZ的去除,同时考察不同催化剂投量、污染物浓度和pH的影响,得到以下主要结论:
(1)AgCl/MIL-100(Fe)可以有效出去水中的SMZ。当反应溶液pH值为7.0,催化剂投量为1.0 g·
(2)污染物浓度、光催化剂投量和pH值对SMZ去除效果有显著的影响。随着污染物浓度和催化剂投量的提升,SMZ的去除效果先升高后降低。pH会影响催化剂和污染物表面的Zeta电位,SMZ的降解动力学常数随着pH的升高而升高,更多的O
(3)AgCl/MIL-100(Fe)光催化降解SMZ的过程中,•O
作者贡献声明
宁荣盛:制定研究方案,开展实验和论文撰写;
黎雷:提供技术指导和全文审阅修改;
于水利:提供思路,研究支持和全文审阅修改;
袁江:数据处理。
参考文献
GINN O, TANK J L, BADILLA-AGUILAR A, et al. Persistence of antibiotic resistance genes varies with particle size and substrate conditions in recirculating streams[J]. Environmental Science & Technology,2023, 57(24): 8902. [百度学术]
WANG Y, DONG X, ZANG J, et al. Antibiotic residues of drinking-water and its human exposure risk assessment in rural Eastern China[J]. Water Research,2023, 236: 119940. [百度学术]
PEHRSSON E C, TSUKAYAMA P, PATEL S, et al. Interconnected microbiomes and resistomes in low-income human habitats[J]. Nature, 2016, 533(7602): 212. [百度学术]
ZHANG L, ZHU Z, ZHAO M, et al. Occurrence, removal, emission and environment risk of 32 antibiotics and metabolites in wastewater treatment plants in Wuhu, China[J]. Science of The Total Environment, 2023, 899: 165681. [百度学术]
杨赟,周媛媛,胡豪,等. MOF-808/MIL-101(Fe)的制备及其光催化性能研究[J]. 工业水处理, 2023,43(8):97 [百度学术]
YANG yun, ZHOU yuanyuan, HU hao, et al. Preparation and photocatalytic properties of MOF-808/MIL-101(Fe) [J]. Industrial Water Treatment, 2023,43(8):97 [百度学术]
GAMBOA-SAVOY F, ONFRAY C, HASSAN N, et al. Enhanced catalytic reduction of emerging contaminant by using magnetic CuFe2O4@MIL-100(Fe) in Fenton-based electrochemical processes[J]. Chemosphere, 2023, 337: 139231. [百度学术]
GUO J, JIA H, ZHANG A, et al. MIL-100 (Fe) with mix-valence coordinatively unsaturated metal site as Fenton-like catalyst for efficiently removing tetracycline hydrochloride: Boosting Fe(III)/Fe(II) cycle by photoreduction[J]. Separation and Purification Technology,2021, 262: 118334. [百度学术]
FAN G, NING R, YAN Z, et al. Double photoelectron-transfer mechanism in Ag-AgCl/WO3/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity for trimethoprim degradation[J]. Journal of Hazardous Materials,2021, 403: 123964. [百度学术]
HE Y, WANG D, LI X, et al. Photocatalytic degradation of tetracycline by metal-organic frameworks modified with Bi2WO6 nanosheet under direct sunlight[J]. Chemosphere,2021, 284: 131386. [百度学术]
GAO Q, LIN D, FAN Y, et al. Visible light induced photocatalytic reduction of Cr(VI) by self-assembled and amorphous Fe-2MI[J]. Chemical Engineering Journal, 2019, 374: 10. [百度学术]
XIA P, CAO S, ZHU B, et al. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria[J]. Angewandte Chemie International Edition,2020, 59(13): 5218. [百度学术]
WANG Y, HE L, DANG G, et al. Preparation of Fe-MIL(100)-encapsulated magnetic g-C3N4 for adsorption of PPCPs from aqueous solution[J]. Environmental Science and Pollution Research,2021, 28(29): 39769. [百度学术]
ROMEIRO A, AZENHA M E, CANLE M, et al. Titanium dioxide nanoparticle photocatalysed degradation of ibuprofen and naproxen in water: competing hydroxyl radical attack and oxidative decarboxylation by semiconductor holes[J]. Chemistry Select,2018, 3(39): 10915. [百度学术]
GAO K, HOU L, AN X, et al. BiOBr/MXene/gC3N4 Z-scheme heterostructure photocatalysts mediated by oxygen vacancies and MXene quantum dots for tetracycline degradation: Process, mechanism and toxicity analysis[J]. Applied Catalysis B: Environmental, 2023, 323: 122150. [百度学术]
YUAN R, QIU J, YUE C, et al. Self-assembled hierarchical and bifunctional MIL-88A(Fe)@ZnIn2S4 heterostructure as a reusable sunlight-driven photocatalyst for highly efficient water purification[J]. Chemical Engineering Journal,2020, 401: 126020. [百度学术]
XU J, XU J, JIANG S, et al. Facile synthesis of a novel Ag3PO4/MIL-100(Fe) Z-scheme photocatalyst for enhancing tetracycline degradation under visible light[J]. Environmental Science and Pollution Research, 2020, 27(30): 37839. [百度学术]
NING R, PANG H, YAN Z, et al. An innovative S-scheme AgCl/MIL-100(Fe) heterojunction for visible-light-driven degradation of sulfamethazine and mechanism insight[J]. Journal of Hazardous Materials, 2022, 435: 129061. [百度学术]
XU Q, ZHANG L, CHENG B, et al. S-scheme heterojunction photocatalyst[J]. Chem,2020, 6(7): 1543. [百度学术]
WU Y, WANG F, JIN X, et al. Highly active metal-free carbon dots/g-C3N4 hollow porous nanospheres for solar-light-driven PPCPs remediation: Mechanism insights, kinetics and effects of natural water matrices[J]. Water Research,2020, 172:115492. [百度学术]
WEN X, QIAN L, LÜ X, et al. Photocatalytic degradation of sulfamethazine using a direct Z-Scheme AgI/Bi4V2O11 photocatalyst: Mineralization activity, degradation pathways and promoted charge separation mechanism[J]. Journal of Hazardous Materials, 2020, 385: 121508. [百度学术]