摘要
以CAP为对象,利用碳纤维阴极研究电化学还原氯霉素的效能与机制。重点探究电流密度、pH、CAP初始浓度、电解质浓度和种类对CAP降解效果、TOC去除率和脱氯效果等影响,研究表明电流密度和电解质种类对CAP的降解效果影响较大,阴极还原的最佳反应条件为:电流密度40 mA·c
氯霉素(CAP)是一种被大规模应用于医药、畜牧和水产行业的广谱抗生素,其物化性质稳定,能够在环境中长期存
在水处理领域中,电化学还原技术常被用于卤代有机物的脱卤处
本文以碳纤维电极为阴极对CAP进行电化学还原实验。通过改变电流密度、溶液pH、CAP初始质量浓度、电解质摩尔浓度,探究不同因素对阴极还原CAP的速率、TOC去除率、脱卤效果和反应电流效率的影响。并通过循环伏安法、三维荧光检测和中间产物测试,分析CAP在阴极的降解方式和机理,研究结果为水中抗生素类有机污染物的去除提供了新的途径。
实验利用稳压恒流直流电源提供恒定电流密度,以Sm-PEG-PbO2电极为阳极,碳纤维为阴极,电极尺寸为1 cm×1 cm×0.1 cm。在不同的溶液中进行电解,每隔一定时间进行取样,电解完成后,对样品进行分析,降解实验装置如

图1 电解反应装置示意图
Fig.1 Image of the electrolytic reaction device
采用液相色谱仪(LC-2030)检测氯霉素浓度,配备岛津C18反相色谱柱(250 mm × 4.6 mm × 5 μm,VP-ODS)。流动相为甲醇和水(甲醇与水的体积比为55:45),流速1.0 mL∙mi
三维荧光光谱(EEM)利用有机物的荧光特性对水中溶解性有机物进行定性表征,该方法检测简便直观。实验检测条件如下:扫描的激发波长(Ex)范围为220~450 nm,发射波长(Em)范围为220~550 nm,扫描步长为5 nm,扫描速度为12 000 nm·mi
为探究CAP氧化反应机理,采用超高效液相色谱-四级杆-飞行时间质谱联用仪(UPLC-TOF-MS)对CAP降解产物进行定性分析和定量测定。选择水和乙腈为流动相,柱温45℃。质谱分析条件为:采用正负离子全扫对CAP降解产物进行分析,电离源ESI,毛细管压力2.0 kV,温度115℃。
实验探究了电流密度对电催化还原CAP效果的影响。在原始pH=5.89,CAP初始浓度10.0 mg·

图2 CAP去除率的不同影响因素
Fig. 2 CAP removal rate at different effect factors
由
不同电流密度下的TOC去除率及平均电流效率如
H2O+ | (1) |
H2O+Hads*+ | (2) |

图3 不同电流密度和pH对降解效果的影响
Fig. 3 Effect of different densities of currents and pH on degradation performance
阴极反应过程中不同pH对降解CAP的影响。反应20 min后,在pH为2.99、5.89、7.13、9.65和11.21的条件下,去除率分别为97.29%、95.10%、94.91%、84.41%和78.63%如
不同pH条件下电解后的TOC去除率以及平均电流效率如
实验研究了CAP 初始浓度对阴极还原反应的影响。分别选取CAP初始浓度为5.0、10.0、15.0、20.0 mg·

图4 不同CAP和Na2SO4浓度对降解效果的影响
Fig. 4 Effect of different concentrations of CAP and Na2SO4 on degradation performance
实验探究了电解质浓度对阴极还原降解CAP效果的影响。降解曲线如

图5 碳纤维电极在不同体系中的循环伏安曲线
Fig.5 Cyclic voltammograms obtained in different systems on carbon fiber electrode
三维荧光光谱技术常被用来检测水中有荧光特性的可溶性有机物。为了探究CAP电催化过程中可溶性有机物种类及总量的变化,使用碳纤维电极在电流密度为40 mA·c

图6 反应过程中有机物的三维荧光图谱
Fig.6 EEM of organic matter during the reaction
利用超高效液相色谱-四级杆-飞行时间质谱联用仪(UPLC-QTOF-MS)对CAP在阴极降解的中间产物进行检测,检测到的中间产物列于
编号 | 名称 | 结构式 | m/z |
---|---|---|---|
CAP |
![]() | 323.004 | |
A | 2,2-二氯-N-((2S)-1,3-二羟基-1-(4-亚硝基苯)丙-2-基)乙酰胺 |
![]() | 306.100 |
B | 2,2-二氯-N-((2S)-1,3-二羟基-1-(4-(羟氨基)苯)丙-2-基)乙酰胺 |
![]() | 308.186 |
C | N-((2S)-1-(4-氨基苯)-1,3-二羟基丙-2-基)-2,2-二氯乙酰胺 |
![]() | 292.042 |
D | N-((2S)-1-(4-氨基苯)-1,3-二羟基丙烷-2-基)-2-氯丙酰胺 |
![]() | 257.865 |
E | N-((2S)-1-(4-氨基苯)-1,3-二羟基丙-2-基)异丁酰胺 |
![]() | 221.157 |

图7 CAP可能的降解路径
Fig.7 The proposed pathway of CAP pathway
由
本文使用碳纤维电极对CAP进行电化学还原处理。探究了降解过程中各种工况条件对降解率、矿化率及脱氯效果的影响。同时利用循环伏安法研究CAP在电极表面的还原方式,通过分析反应过程中有机物的变化并检测降解过程中的中间产物,推测出CAP的降解路径及还原的机理,得到以下结论。
(1)以碳纤维为阴极的还原体系能有效降解CAP,最佳反应条件下30 min降解率可达99.13%,脱氯率可达76.14%。电流密度增大有利于提高TOC去除率和电流效率,但对脱氯效果的影响较小;CAP在酸性环境中降解速率最大,脱氯效果最好;电解受扩散过程控制的影响,CAP的初始浓度对电催化降解效果有一定的影响,当CAP初始质量浓度为5 mg·
(2)CAP在碳纤维电极上发生了直接的电子转移,CV曲线在-0.37 V(vs. SCE)处有微弱的还原峰,峰电流为-0.11 mA,推测为硝基被还原为了亚硝基。说明CAP的在碳纤维上的降解是直接还原和间接还原的共同反应。三维荧光图谱分析和超高效液相四极杆飞行时间质谱对降解的中间产物的检测结果推测出CAP在碳纤维电极上可能的降解路径和还原机制,CAP的还原过程主要为硝基还原为氨基的过程和C-Cl键断裂,Cl被H取代的过程。
作者贡献声明
唐玉霖:方案设计,反应器制备;
高丛浩:论文撰写,数据整理;
张超洋:试验操作,数据收集;
徐斌:论文指导;
张天阳:机理分析,论文修改;
孙东晓:数据收集;数据处理;
陈月:试验操作,试验指导。
参考文献
QIAO M, YING G G, SINGER A C, et al. Review of antibiotic resistance in China and its environment[J]. Environment International, 2018, 110: 160. [百度学术]
ZHOU Y L, SHA Q Z, WU M H, et al. Risk assessment of antibiotic residues and selective drug resistance in wastewater from antibiotic pharmaceutical enterprises in Sichuan[J]. Chinese Journal of Antibiotics, 2021, 46(4): 346. [百度学术]
ZHAO R, FENG J, HUANG J, et al. Reponses of microbial community and antibiotic resistance genes to the selection pressures of ampicillin, cephalexin and chloramphenicol in activated sludge reactors[J]. Science of the Total Environment, 2021, 755: 142632. [百度学术]
CHU W H, KRASNER S W, GAO N Y, et al. Contribution of the antibiotic chloramphenicol and its analogues as precursors of dichloroacetamide and other disinfection byproducts in drinking water[J]. Environmental Science & Technology, 2016, 50(1): 388. [百度学术]
LI C, LUO F, DUAN H J, et al. Degradation of chloramphenicol by chlorine and chlorine dioxide in a pilot-scale water distribution system[J]. Separation and Purification Technology, 2019, 211: 564. [百度学术]
DONG H Y, QIANG Z M, HU J, et al. Degradation of chloramphenicol by UV/chlorine treatment: Kinetics, mechanism and enhanced formation of halonitromethanes[J]. Water Research, 2017, 121: 178. [百度学术]
YE L, YOU H, YAO J, et al. Water treatment technologies for perchlorate: a review[J]. Desalination, 2012, 298: 1. [百度学术]
WANG D M, LIN H Y, SHAH S I, et al. Indirect electrochemical reduction of perchlorate and nitrate in dilute aqueous solutions at the Ti–water interface[J]. Separation and Purification Technology, 2009, 67: 127. [百度学术]
MU Y B, WILLIAMS P T. Recent advances in the abatement of volatile organic compounds (VOCs) and chlorinated-VOCs by non-thermal plasma technology: a review[J]. Chemosphere, 2022, 308: 136481. [百度学术]
SUN C. Electrocatalvtic dechlorination of 2,4-dichlorophenoxyacetic acid by nanosized titanium nitride doped palladium/nickel foam electrodes [D]. Hangzhou:Zhejiang University, 2015. [百度学术]
CHI Y H, XU S P, LI M X, et al. Effective blockage of chloride ion quenching and chlorinated by-product generation in photocatalytic wastewater treatment[J]. Journal of Hazardous Materials, 2020, 396: 122670. [百度学术]
CHEN G, WANG Z Y, XIA D G. Electrochemically codeposited palladium/molybdenum oxide electrode for electrocatalytic reductive dechlorination of 4-chlorophenol[J]. Electrochemistry Communications, 2004, 6(3): 268. [百度学术]
DU Y J, WANG C, LIU J, et al. Role of oxygen and superoxide radicals in promoting H2O2 production during VUV/UV radiation of water[J]. Chemical Engineering Science, 2021, 241: 116683. [百度学术]
DU D D. Preparation of RuO2-based integ electrocatalyst and the study of performance of her [D]. Beijing: Beijing University of Chemical Technology, 2022. [百度学术]
ZHANG Y. Reaction properties of Ni-Fe-Sn electrodes Research on electrodeposited and hydrogen evolution [D]. zhenjiang:Jiangsu University of Science and Technology, 2022. [百度学术]
XIANG S, WANG L, WANG H, et al.Occurrence of disinfection by-products in tap water and the relevant health risk evaluation affected by water source switching in Hangzhou City [J]. Acta Scientiae Circumstantiae, 2022,42(2):195. [百度学术]
LIN J, ZHANG K T, YE C S, et al. Removal of chloramphenicol antibiotics in natural and engineered water systems: review of reaction mechanisms and product toxicity[J]. Science of The Total Environment, 2022, 850: 158059. [百度学术]
WU D, SUN F Q, ZHOU Y. Degradation of chloramphenicol with novel metal foam electrodes in bioelectrochemical systems[J]. Electrochimica Acta, 2017, 240: 136. [百度学术]