摘要
采用亚铁(F
热脱附技术是目前用于修复污染土壤的常用技术之
近年来,高级氧化技术(AOP)被广泛应用于热脱附废水中复杂有机物的去除,该技术主要包括:Fenton/类Fenton 氧化、过硫酸盐氧化、次氯酸钠氧化和臭氧氧化
由于热脱附废水中有机物浓度极高,且Fenton和过硫酸盐药剂的市售价格较高,这使得此类废水的处理成本一直居高不下。如何优化反应条件、合理搭配使用不同氧化技术,在保证处理效能的同时降低经济成本是值得探究的问题。因此,本文以原油污染土壤的热脱附废水为研究对象,选取了F
本实验废水取自新疆某原油浸染的土壤处理系统,该废水是原油开采污染土壤热脱附处理后的冷凝水,主要水质参数如
ρCOD/(mg· | ρ/ (mg· | pH | ρ石油烃类/ (mg· |
---|---|---|---|
5 560±131 | 52.6±1.2 | 7.2 | 51.1 |
根据预实验结果,选取pH值、F
组别 | pH | ρ/(g· | 氧化剂投加量 | 反应时间/h |
---|---|---|---|---|
F | 3 | 0.4 |
20.0 mL· | 1 |
3 | 0.8 |
40.0 mL· | 3 | |
3 | 1.2 |
60.0 mL· | 5 | |
5 | 0.4 |
40.0 mL· | 5 | |
5 | 0.8 |
60.0 mL· | 1 | |
5 | 1.2 |
20.0 mL· | 3 | |
7 | 0.4 |
60.0 mL· | 3 | |
7 | 0.8 |
20.0 mL· | 5 | |
7 | 1.2 |
40.0 mL· | 1 | |
F | 3 | 0.6 |
3.0 g· | 1 |
3 | 1.2 |
6.0 g· | 2 | |
3 | 1.8 |
9.0 g· | 3 | |
5 | 0.6 |
6.0 g· | 3 | |
5 | 1.2 |
9.0 g· | 1 | |
5 | 1.8 |
3.0 g· | 2 | |
7 | 0.6 |
9.0 g· | 2 | |
7 | 1.2 |
3.0 g· | 3 | |
7 | 1.8 |
6.0 g· | 1 | |
F | 3 | 0.4 |
20.0 mL· | 1 |
3 | 0.8 |
40.0 mL· | 3 | |
3 | 1.2 |
60.0 mL· | 5 | |
5 | 0.4 |
40.0 mL· | 5 | |
5 | 0.8 |
60.0 mL· | 1 | |
5 | 1.2 |
20.0 mL· | 3 | |
7 | 0.4 |
60.0 mL· | 3 | |
7 | 0.8 |
20.0 mL· | 5 | |
7 | 1.2 |
40.0 mL· | 1 |
水样测定前先通过0.45 µm微滤膜过滤。COD测定采用哈希快速测定方法,NH
石油烃类测定采用安捷伦气相色谱仪(GC‒8890),色谱柱为Aglient HP‒5 型石英毛细管柱30 m×250 μm×0.25 μm,载气(N2)流速2 mL·mi
紫外吸光度测定采用UV‒2600i紫外可见分光光度计,以超纯水为空白,用1 cm石英比色皿,对200~500 nm波长范围内的吸光度进行测定。
三维荧光光谱测定采用Hitachi F‒4600荧光分光光度计,激发波长扫描范围为200~450 nm,发生波长扫描范围为280~550 nm,扫描步长均设置为5 nm,扫描速度为2 400 nm·mi
为了得到pH值、F
(1) |
式中:xi、xj为自变量;aij为系数;c为常数项;y为因变量;m为指数,m=0,1,2。
根据

图 1 不同氧化体系的去除效果
Fig. 1 Removal effect of different oxidants
从废水中石油烃的质量浓度变化可以看出,F
3种不同氧化体系对NH
总反应式为
(2) |
实验过程中还发现,在F
为进一步分析3种氧化体系对不同类型有机物的去除作用,测定了不同氧化剂处理前后水样的紫外吸光度曲线。从

图 2 亚铁离子结合不同氧化体系处理热脱附废水的UV‒Vis光谱
Fig. 2 UV‒Vis spectra of F

图 3 亚铁离子结合不同氧化体系处理热脱附废水的UV‒Vis光谱积分及参数分析
Fig. 3 UV‒Vis spectral integrals and parameter analysis of F
通过对水样进行三维荧光测定(

图 4 亚铁离子结合不同氧化体系处理热脱附废水的三维荧光光谱
Fig. 4 3D fluorescence spectroscopy of F
如

图 5 亚铁离子结合不同氧化体系处理热脱附废水的三维荧光区域积分
Fig. 5 3D fluorescence area integration of F

图 6 亚铁离子结合不同氧化体系处理的经济成本计算及去除效果分析
Fig. 6 Economic cost calculation and removal effect analysis of F
为进一步探究不同氧化剂对COD去除效果的显著影响因素,采用Python语言机器学习模块scikit-learn中的API:PolynomialFeatures对不同影响因素与COD去除率之间的相关关系建立数学模型,结果见
X1 | X2 | X3 | X4 | X1X1 | X1X2 | X1X3 | X1X4 | X2X2 | X2X3 | X2X4 | X3X3 | X3X4 | X4X4 | c | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Y1 | -0.01 | 0.26 | 1.07 | 0.26 | -0.20 | -0.19 | 0.01 | 0.71 | -0.27 | 0.01 | 0.02 | -0.02 | -0.02 | -0.95 | -6.49 |
Y2 | 0.16 | -0.49 | -0.31 | -0.04 | -0.02 | 0.21 | -0.44 | 0.81 | -0.08 | -0.28 | -0.74 | 0.05 | 0.31 | 0.66 | 26.10 |
Y3 | -0.34 | 0.61 | 3.91 | 0.47 | 0.05 | -0.78 | -1.61 | 1.51 | -0.06 | 0.16 | 2.95 | -0.05 | 0.12 | -3.49 | -38.66 |
注: X1为pH值;X2为F
M1 | M2 | M3 | M4 | M1M1 | M1M2 | M1M3 | M1M4 | M2M2 | M2M3 | M2M4 | M3M3 | M3M4 | M4M4 | c | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Y1 | -0.15 | 0.17 | 2.12 | 6.08 | -2.73 | -6.68 | 2.99 | 0.13 | -3.06 | -7.37 | 4.34 | -0.02 | -2.00 | 1.06 | -0.74 |
Y2 | -0.14 | -0.12 | -0.14 | 3.26 | -0.55 | -0.24 | 1.90 | -0.04 | 1.34 | -0.10 | -1.66 | -0.01 | -1.36 | 0.419 | 44.52 |
Y3 | 0.25 | 0.01 | 1.85 | -0.14 | 0.03 | 0.77 | -7.83 | -1.13 | -0.40 | -0.01 | 0.37 | -0.04 | 0.14 | -5.92 | -105.22 |
注: M1为HCl费用;M2为F
结合
氧化体系 | 盐酸药耗/(元· | 铁盐药耗/(元· | 氧化剂药耗/ (元· | 建设投资/ (元· | 总投资/(元· | COD去除率/% |
---|---|---|---|---|---|---|
F | 0.446 | 1.95 | 21.60 | 0.112 | 24.11 | 36.94 |
F | 0.018 | 0.99 | 25.50 | 0.023 | 26.53 | 32.76 |
F | 0.456 | 1.98 | 43.80 | 0.114 | 46.35 | 67.48 |
综合各氧化剂对COD、NH
本文对比研究了F
(1) F
(2) 根据废水处理前后的紫外光谱和三维荧光分析可知,F
(3) 结合处理效果和经济费用,F
作者贡献声明
王 曦:技术和材料支持。
李惠平:论文撰写与修改。
梁 郡:实验设计与操作。
肖 丰:实验设计与操作。
殷 峻:技术和材料支持。
庞维海:技术支持与论文修改。
谢 丽:技术支持与论文修改。
陈静静:技术和材料支持。
参考文献
ZHONG C , ZHOU J , CHEN Z , et al. A laboratory evaluation of superheated steam extraction process for decontamination of oil-based drill cuttings[J]. Journal of Environmental Chemical Engineering, 2018, 6(5) :1325 [百度学术]
孙静文,刘光全,张明栋,等.油基钻屑电磁加热脱附可行性及参数优化[J].天然气工业,2017,37(2):103. [百度学术]
SUN Jingwen, LIU Guangquan, ZHANG Mingdong, et al. Feasibility and parameter optimization of electromagnetic heating desorption of oil-based drilling cuttings[J].Natural Gas Industry,2017,37(2):103. [百度学术]
WANG C Q , LIN X Y , HE M , et al. Environmental performance, mechanical and microstructure analysis of concrete containing oil-based drilling cuttings pyrolysis residues of shale gas[J]. Journal of Hazardous Materials, 2017, 338(15):410. [百度学术]
GUPTA V K , VERMA N . Removal of volatile organic compounds by cryogenic condensation followed by adsorption[J]. Chemical Engineering , 2002, 57(14):2679. [百度学术]
孟琪莉,孙冲.高级氧化技术在工业难降解有机废水处理中的应用研究进展[J].工业用水与废水,2021,52(3):1. [百度学术]
MENG Qili, SUN Chong. Research progress of application of advanced oxidation technology in hard-degradable industrial organic wastewater treatment [J]. Industrial Water and Wastewater, 2021, 52(3): 1. [百度学术]
MHZ A , HUI D A , LIANG Z A , et al. A review on Fenton process for organic wastewater treatment based on optimization perspective[J]. Science of the Total Environment, 2019, 670:110. [百度学术]
VILLA R D , TROVÓ A G , NOGUEIRA R . Diesel degradation in soil by fenton process[J]. Journal of the Brazilian Chemical Society, 2010, 21(6):1089. [百度学术]
ALI A , KN B , BA A . Hydrocarbon contaminated soil remediation: a comparison between Fenton, sono-Fenton, photo-Fenton and sono-photo-Fenton processes[J]. Journal of Industrial and Engineering Chemistry, 2019, 79:181. [百度学术]
徐源洲,张力浩,方成,等.优化SO
XU Yuanzhou, ZHANG Lihao, FANG Cheng, et al. Optimizing SO
张译之,贾汉忠,汪立今.F
ZHANG Yizhi, JIA Hanzhong, WANG Lijin. Experimental study on F
WANG J L, WANG S Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants [J]. Chemical Engineering Journal, 2018, 334: 1502. [百度学术]
ZHAO D, LIAO X Y, YAN X L, et al. Effect and mechanism of persulfate activated by different methods for PAHs removal in soil[J]. Journal of Hazardous Materials, 2013, 254/255: 228. [百度学术]
石佳奇,章凡,王磊,等. 芬顿和活化过硫酸盐法对双(2‒氯乙氧基)甲烷的氧化降解[C]//2019中国环境科学学会科学技术年会论文集(第四卷).北京:中国环境科学学会,2019:342-347. [百度学术]
SHI Jiaqi, ZHANG Fan, WANG Lei, et al. Oxidative degradation of bis(2-chloroethoxy)methane by Fenton and activated persulfate method [C]//2019 Science of Chinese Society for Environmental Sciences Proceedings of the Annual Technical Conference (Volume 4).Beijing:Chinese Society of Environmental Sciences,2019: 342-347. [百度学术]
MATZEK L W, CARTER K E. Activated persulfate for organic chemical degradation: a review[J]. Chemosphere, 2016, 151: 178. [百度学术]
PEDREGOSA F , VAROQUAUX G , GRAMFORT A , et al. Scikit-learn: machine learning in Python[J].Journal of Machine Learning Research, 2012,12:2825. [百度学术]
LEMAITRE G , NOGUEIRA F , ARIDAS C K .Imbalanced-learn: a Python toolbox to tackle the curse of imbalanced datasets in machine learning[J]. Journal of Machine Learning Research, 2016, 18:17. [百度学术]
MARTINS R C, ROSSI A F, QUINTA-FERREIRA R M. Fenton’s oxidation process for phenolic wastewater remediation and biodegradability enhancement[J]. Journal of Hazardous Materials, 2010, 180(1/3):716. [百度学术]
LU M, ZHANG Z, QIAO W, et al. Removal of residual contaminants in petroleum-contaminated soil by Fenton-like oxidation[J]. Journal of Hazardous Materials, 2010, 179(1/3):604. [百度学术]
刘琼枝,廖晓勇,李尤,等.天然有机物活化过硫酸盐降解土壤有机污染物效果[J].环境科学,2018,39(10):4752. [百度学术]
LIU Qiongzhi, LIAO Xiaoyong, LI You, et al. Effect of activated persulfate by natural organic matter to degrade soil organic pollutants[J].Environmental Science,2018,39(10):4752. [百度学术]
吴昊,孙丽娜,李玉双,等.活化过硫酸钠去除长期污染土壤中的TPH[J].环境工程学报,2016,10(9):5231. [百度学术]
WU Hao, SUN Lina, LI Yushuang, et al. Activation of sodium persulfate to remove TPH in long-term polluted soil[J].Chinese Journal of Environmental Engineering,2016,10(9):5231. [百度学术]
QIN Lei, GAO Mingzhen, ZHANG Mengyuan, et al. Application of encapsulated algae into MBR for high-ammonia nitrogen wastewater treatment and biofouling control[J]. Water Research,2020,187:116430. [百度学术]
LI Fuqin, LÜ Xiaolong, WANG Shaoxiong, et al. Comparison and selection of different chemicals for chemical oxidation pretreatment of coking wastewater[J]. Industrial Water Treatment,2014,34(2):30. [百度学术]
杨颖,郭洪光,邓钦祖,等.F
YANG Ying, GUO Hongguang, DENG Qinzu, et al.Analysis of F
张艳芳,石键韵,温尚龙,等.芬顿法深度处理某化工废水的研究[J].当代化工,2015,44(8):1805. [百度学术]
ZHANG Yanfang, SHI Jianyun, WEN Shanglong, et al. Research on advanced treatment of chemical wastewater by Fenton method[J]. Contemporary Chemical Industry,2015,44(8):1805. [百度学术]
LEE Y P, FUJII M, TERAO K, et al. Effect of dissolved organic matter on Fe(Ⅱ) oxidation in natural and engineered waters[J]. Water Res, 2016, 103:160. [百度学术]
ZHANG L, XU K, WANG S, et al. Characteristics of dissolved organic nitrogen in overlying water of typical lakes of Yunnan Plateau[J]. China, Ecological Indicators, 2018, 84:727. [百度学术]
代京京,吴静,谢超波,等.丁基萘磺酸钠水溶液的三维荧光特性[J].光谱学与光谱分析,2012,32(11):3053. [百度学术]
DAI Jingjing, WU Jing, XIE Chaobo, et al. Three-dimensional fluorescence properties of sodium butylnaphthalene sulfonate aqueous solution[J].Spectroscopy and Spectral Analysis,2012,32(11):3053. [百度学术]
吴静,崔硕,谢超波,等.好氧处理后城市污水荧光指纹的变化[J].光谱学与光谱分析,2011,31(12):3302. [百度学术]
WU Jing, CUI Shuo, XIE Chaobo, et al. Changes of fluorescent fingerprints of urban sewage after aerobic treatment[J]. Spectroscopy and Spectral Analysis,2011,31(12):3302. [百度学术]
吴静,曹知平,谢超波,等.石化废水的三维荧光光谱特征[J].光谱学与光谱分析,2011,31(9):2437. [百度学术]
WU Jing, CAO Zhiping, XIE Chaobo, et al. Three-dimensional fluorescence spectral characteristics of petrochemical wastewater [J]. Spectroscopy and Spectral Analysis, 2011,31(9):2437. [百度学术]