摘要
对不同条件下的HR3C奥氏体耐热钢蠕变试样进行性能测试和微观结构观察,研究奥氏体耐热不锈钢蠕变沿晶破坏行为和损伤特征。电子背散射衍射(EBSD)分析结果表明,不同蠕变速度下材料的晶粒尺寸基本不变,未产生择优取向,但高蠕变速度条件下部分孪晶界演变成一般晶界,而低蠕变速度下原始孪晶结构基本保持不变。EBSD分析结果清楚地反映了微观蠕变应变的不均匀性。沿晶微裂纹和蠕变空洞的产生和扩展是最显著的损伤特征,这些损伤现象与不同蠕变速度下的蠕变机制及晶界性质密切相关。
为满足新一代超超临界发电技术的发展,电站主要材料也将由高温性能更好的奥氏体耐热钢取代传统的铁素体耐热
试验材料为国产HR3C炉管,常规工艺制造,并经最终退火固溶体热处理。材料的合金成分成分如
材料及标准 | 质量分数/% | ||||||
---|---|---|---|---|---|---|---|
C | Si | Mn | Cr | Ni | Nb | N | |
HR3C | 0.06 | 0.35 | 1.18 | 24.84 | 20.54 | 0.41 | 0.230 |
GB5310—2008 |
0.04~ <0.10 | ≤0.75 | ≤2.00 |
24.00~ <26.00 |
19.00~ <22.00 |
0.20~ <0.60 |
0.150~ <0.350 |
ASME SA‒213 |
0.04~ <0.10 | ≤0.75 | ≤2.00 |
24.00~ <26.00 |
17.00~ <23.00 |
0.20~ <0.60 |
0.150~ <0.350 |
沿炉管轴向截取蠕变试样进行标准持久蠕变试验。在650 ℃下分别进行150、170、200、250和300 MPa的恒载荷拉伸持久试验直至断裂。利用不同条件下的蠕变断裂试样,截取距离颈缩部位10 mm左右位置的平行段和加持端尾部作为测试分析材料。维氏硬度测试的荷载为1.961 N,保持荷载时间为15 s。同一试样中,分别在晶界处和晶粒内部进行硬度测试,得到多组数据取平均值。蠕变断裂试样的微观分析试样分为沿拉伸轴的纵向(L)和垂直拉伸轴的横向(T)两种。
试样经常规表面处理后分别利用精细 X 射线衍射 (XRD) 、场发射枪扫描电子显微镜(FEG-SEM,ZEISS Sigma 500)及Aztec EBSD电子背散射衍射系统进行测试分析。在SEM测试前,先对试样进行机械抛光,然后在配制的电解液(20 mL高氯酸+60 mL冰醋酸)中进行电解抛光,电流为500 mA左右,抛光时间约为10 s。在EBSD测试中,扫描步长选择2 μm,利用AztecCrystal软件和HKL Channel 5软件对扫描数据进行处理,得到晶粒取向图、反极图(Inverse Pole Figure, IPF)、局部局域取向差分布图(Kernel Average Misorientation, KAM)、晶粒取向差统计图等。
持久蠕变试验的结果如

图1 HR3C炉管材料650 ℃下的蠕变断裂数据
Fig.1 Creep data of HR3C tube at 650 ℃
蠕变后试样的XRD结果如

图2 不同应力条件下蠕变试样的XRD衍射结果和晶面(111)衍射峰
Fig.2 X⁃ray diffraction patterns of crept samples at different stresses
试样 | 蠕变应力/MPa | 持久时间/h | 蠕变应变/% | 平均蠕变速度/1 | (111)面峰位/2θ |
---|---|---|---|---|---|
A | 原始材料 | 43.55 | |||
B | 250 | 1 235 | 9.7 | 25.00 | 43.60 |
C | 200 | 5 290 | 8.1 | 5.36 | 43.65 |
D | 170 | 10 073 | 5.1 | 1.79 | 43.66 |
E | 150 | 13 730 | 3.0 | 0.61 | 43.62 |
基体组织晶格常数的变化主要和基体固溶体组织结构演变相关。一般认为,晶格常数变化和显微组织的演变特别是第二相的析出、缺陷密度甚至应力分布相关。供货态HR3C炉管的晶格常数相对较大,主要是因为固溶合金元素浓度较高。蠕变过程中,奥氏体基体相晶格常数的变化主要是和析出相的沉淀长大相关,尤其是M23C6碳氮化合物和NbCrN弥散相的析出,合金元素富集在沉淀相中,导致基体中合金元素固溶度下降,晶格常数减小。170 MPa试验条件下晶格常数变化的异常现象,应该和此特殊条件下的组织结构演变相关。

图3 不同蠕变态下试样的显微硬度变化
Fig.3 Microhardness versus creep time
奥氏体耐热钢的蠕变断口均为沿晶断裂,宏观断口基本没有颈缩现象,塑性变形很

图4 蠕变断裂试样SEM图片
Fig.4 SEM images of longitudinal sections (left) and transverse sections (right)
多晶体的形变应变引起不同晶粒之间的取向差及各晶粒内部取向差可以利用扫描电子背散射衍射技术(EBSD)进行定量分

图5 不同蠕变试样横截面的晶体取向图
Fig.5 Crystal orientation of cross-section crept samples
进一步对蠕变试样进行晶粒尺寸及其分布分析,在EBSD中,晶粒是指相邻像素点的取向差小于某一设定临界值的像素点的集合。这里该临界值设定为15°,即相邻晶粒取向差大于15°时,该晶界为大角度晶界。根据EBSD分析结果,高蠕变应力下试样B的晶粒尺寸稍偏大,约为32 μm,其他蠕变试样的晶粒尺寸基本相当,约为26 μm。意味着在蠕变过程中并没有发生奥氏体晶粒长大,蠕变过程对晶粒尺寸的影响不明显。由EBSD得到的重合点阵晶界(CSL)分布如

图6 不同蠕变试样的CSL晶界分布
Fig.6 CLS maps of grain boundaries
蠕变试样 | CSL晶界占比/% | |
---|---|---|
低Σ(≤29) | Σ 3 | |
B | 37.82 | 35.73 |
C | 37.57 | 35.48 |
D | 39.35 | 37.41 |
E | 59.21 | 56.12 |
从XRD结果看出,不同蠕变试样的XRD衍射峰位有一定变化,衍射峰展宽也不相同。
由
不同蠕变速度下没有形成形变织构,表明蠕变形变主要是通过相邻晶粒协调转动机制产生的。事实上,带有微裂纹和蠕变空洞的晶界两侧晶粒取向的施密特因子(Schmidt factor, SF)存在明显差异,这就很好地解释了为什么这些晶界可形成微裂纹或蠕变空
蠕变变形机制依赖于应力,蠕变空洞的形成可归因于扩散,扩散机制依赖于时间和温
EBSD分析结果可反映晶格畸变程度,也可以表达微观塑性形变程度。表示晶粒晶格畸变特征的参量主要有基于核心区域的平均取向差(kernel average misorientation,KAM)和晶粒参考取向差(grain reference orientation deviation,GROD)。KAM值表示的是同一晶粒内某一点与其邻近测量点之间的平均取向差,反映晶体材料局部应变分布,KAM大小与位错密度呈线性相

图7 不同蠕变试样横截面的KAM图
Fig.7 EBSD-KAM map of crept samples

图8 不同蠕变试样横截面的GROD图
Fig.8 EBSD-GROD map of crept samples

图9 不同蠕变试样KAM和GROD相对分布函数峰值和相对分布函数平均值对比
Fig.9 Histograms of peak relative frequency and average values of KAM and GROD
本文利用XRD和EBSD研究了在650 ℃高温和不同蠕变速度下HR3C奥氏体耐热钢的晶界损伤特征,得出以下结论:
(1) 不同蠕变速度下持久蠕变破坏形式都是沿晶开裂,不同蠕变速度下的损伤模式不同,高蠕变速度条件下的蠕变损伤现象主要是由于局部变形引起三角晶界发生楔形裂纹,显示微裂纹沿晶界的扩展主要受蠕变变形控制;低应力长时条件下的蠕变损伤的主要特征是蠕变空洞,蠕变空洞主要受随时间变化的晶界扩散控制。
(2) 不同条件下的蠕变过程材料的晶粒未产生择优取向。低应力蠕变条件下低Σ CSL晶界比例偏高且Σ 3晶界占比也较高,显示低应力蠕变过程原始孪晶结构基本保持不变,而高应力条件下,蠕变过程会使部分孪晶演变成一般晶界。蠕变过程中保持原始低Σ CSL晶界比例不变是蠕变速度高低的标准。
(3) 多种分析结果表明,某一临界蠕变速度下蠕变机制产生转变,高蠕变速度以形变应变为主,低蠕变速度以扩散蠕变为主。临界蠕变速度条件下的蠕变损伤为应变和扩散共同控制的损伤行为最为严重,蠕变机制转变过渡区处于峰值强化附近,也可通过孪晶或低Σ CSL晶界量的变化判断。
(4) EBSD定量分析方法可准确显现蠕变应变的微观特征,其中GROD分析方法更符合奥氏体耐热钢的蠕变形变特征。蠕变应变微观分布明显不均匀,蠕变应变主要发生在晶界附近。
作者贡献声明
胡正飞:确定论文框架,论文修改。
张家乐:参与论文撰写和修改。
张 洁:资料收集,论文撰写,论文修改。
参考文献
HU Zhengfei. Heat-resistant steels, microstructure evolution and life assessment in power plants, in thermal power plant [M]. Croatia: In Tech,2012. [百度学术]
SAWARAGI Y, TERANISHI H, ISEDA A, et al. The development of new stainless steel tubes with high elevated temperature strength [J]. Sumitomo Search, 1990, 44: 146. DOI: 10.1016/B978-0-08-037890-9.50491-9. [百度学术]
HANG S H, KIM B S, MIN T K. Development of ultra supercritical (USC) power plant [J]. Transactions of the Korean Society of Mechanical Engineers B, 2013, 36: 205. DOI:10.3795/KSME-B.2012.36.2.205. [百度学术]
MURAMATSU K. Development of ultra-super critical plant in Japan [C]// Proceedings of Advanced Heat Resistant Steels for Power Generation. Cambridge: The University Press, 1998: 543-554. [百度学术]
ISEDA A, OKADA H, SEMBA H, et al. Long term creep properties and microstructure of SUPER304H, TP347HFG and HR3C for A-USC boilers [J]. Energy Materials, 2007, 2(4):199. DOI:10.1179/174892408X382860. [百度学术]
VISWANATHAN R, BAKKER W T. Materials for ultra supercritical coal power plants‒boiler materials: part 1[J]. Journal of Materials Engineering and Performance, 2001, 10(1):81. DOI: 10.1361/105994901770345394. [百度学术]
NOBUYOSHI K, MASAAKI I, YUSUKE M, et al. Field test results of newly developed austenitic steels in the eddystone unit No.1 boiler [C]// Proceeding of the 8th International Conference on Creep and Fatigue at Elevated Temperatures. San Antonio: American Society of Mechanical Engineers, 2007:203-209. [百度学术]
HU Zhengfei, ZHANG Zhen. Investigation into the effect of precipitating characteristics on the creep behavior of HR3C austenitic steel at 650 ℃[J]. Materials Science and Engineering A, 2019, 742(1): 451. DOI: 10.1016/j.msea.2018.10.124. [百度学术]
HONG C W, HEO Y U, HEO N H. Coherent to incoherent transition of precipitates during rupture test in TP347H austenitic stainless steels [J]. Materials Characterization, 2016, 115:71. DOI: 10.1016/j.matchar.2016.03.018. [百度学术]
方园园,赵杰,李晓娜.HR3C钢高温时效过程中的析出相 [J].金属学报, 2010, 46(7):844. DOI: 10.3724/SP.J.1037.2010.00037. [百度学术]
FANG Yuanyuan, ZHAO Jie, LI Xiaona. Precipitates in HR3C steel aged at high temperature [J]. Acta Metallurgica Sinica, 2010, 46(7): 844. DOI: 10.3724/SP.J.1037.2010.00037 [百度学术]
OKADA H, IGARASHI M, YAMAMOTO S, et al.Long-term service experience with advanced austenitic alloys in eddystone power station [C]// 8th International Conference on Creep and Fatigue at Elevated Temperatures. San Antonio: American Society of Mechanical Engineers, 2007: 181-188. [百度学术]
VISWANATHAN R, HENRY J F, TANZOSH J, et al. U.S. program on materials technology for ultra-supercritical coal power pants [J]. Journal of Materials Engineering and Performance, 2005, 14(3):281. DOI: 10.1361/10599490524039. [百度学术]
MASUYAMA F. Lessons on material issues from eddystone USC power plant[C/CD]// Symposium Advanced Power Plant Heat Resistant Steels and Alloys. Shanghai: [s.n.],2009. [百度学术]
HE J, SANDSTRÖM R, VUJIC S. Creep , low cycle fatigue and creep-fatigue properties of a modified HR3C [J]. Procedia Structural Integrity, 2016, 2: 871. DOI: 10.1016/j.prostr.2016.06.112. [百度学术]
MARTINS R F, BRANCO C M. A fatigue and creep study in austenitic stainless steel 316L used in exhaust pipes of naval gas turbines [J]. Fatigue & Fracture of Engineering Materials & Structures, 2004, 27: 861. DOI: 10.1111/j.1460-2695.2004.00783.x. [百度学术]
BOUCHARD P J, WITHERS P J, MCDONALD S A,et al. Quantification of creep cavitation damage around a crack in a stainless steel pressure vessel [J]. Acta Materialia, 2004, 52: 23. DOI: 10.1016/j.actamat.2003.08.022. [百度学术]
胡正飞. 马氏体耐热钢的应用研究与评价[M]. 北京:科学出版社,2018. [百度学术]
HU Zhengfei. Application research and evaluation of martensitic heat-resistant steels [M]. Beijing: Science Press, 2018. [百度学术]
RAABE D, HERBIG M, SANDLÖBES S, et al. Grain boundary segregation engineering in metallic alloys: a pathway to the design of interfaces [J]. Current Opinion in Solid State and Materials Science, 2014, 18: 253. DOI: 10.1016/j.cossms.2014.06.002. [百度学术]
LEJČEK P, ŠOB M, PAIDAR V. Interfacial segregation and grain boundary embrittlement: an overview and critical assessment of experimental data and calculated results [J]. Progress in Materials Science, 2017, 87:83. DOI: 10.1016/j.pmatsci.2016.11.001. [百度学术]
ABE F, KERN T, VISWANATHAN R. Creep resistant steels [M]. Cambridge:Woodhead Publishings, 2008. [百度学术]
SKLENIČKAA V, KUCHAŘOVÁ K, KVAPILOVÁ M, et al. Creep properties of simulated heat-affected zone of HR3C austenitic steel [J]. Materials Characterization, 2017,128: 238. DOI: 10.1016/j.matchar.2017.04.012. [百度学术]
WRIGHT S A, NOWELL M, FIELD D P. A review of strain analysis using electron backscatter diffraction [J]. Microscopy and Microanalysis, 2011, 17: 316. DOI: 10.1017/S1431927611000055. [百度学术]
MAHESH S, ALUR K C, MATHEW M D. A creep model for austenitic stainless steels incorporating cavitation and wedge cracking [J]. Modelling and Simulation in Materials Science and Engineering, 2011, 19: 15005. DOI: 10.1088/0965-0393/19/1/015005. [百度学术]
HU C Y, WAN X L, ZHANG Y J, et al. The synergistic effect of grain boundary and grain orientation on micro-mechanical properties of austenitic stainless steel [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 118: 104473. DOI: 10.1016/j.jmbbm.2021.104473. [百度学术]
ZHANG J, HU Z, ZHAI G, et al. Creep damage characteristics and evolution of HR3C austenitic steel during long term creep [J]. Materials Science and Engineering: A, 2022, 832:142432. DOI: 10.1016/j.msea.2021.142432. [百度学术]
DAS A, ROY N, RAY A K. Stress induced creep cavity [J]. Materials Science and Engineering: A, 2014, 598: 28. DOI: 10.1016/J.MSEA.2013.12.097. [百度学术]
CUI Y, SAUZAY M, CAES A, et al. Modeling and experimental study of long term creep damage in austenitic stainless steels [J]. Procedia Materials Science, 2014, 3:122. DOI: 10.1016/j.engfailanal.2015.08.009. [百度学术]
RUI S, SHANG Y, FAN Y, et al. EBSD analysis of creep deformation induced grain lattice distortion: a new method for creep damage evaluation of austenitic stainless steels [J]. Materials Science and Engineering: A, 2018, 733: 329. DOI: 10.1016/j.msea.2018.07.058. [百度学术]