摘要
开展了某一国Ⅵ直喷汽油机三元催化转化器(TWC)前、TWC后、汽油机颗粒捕集器(GPF)后3个位置的颗粒物采样及微观形貌研究,分析了发动机工况、TWC、GPF对国Ⅵ直喷汽油机尾气颗粒数量、粒径分布、微观形貌的影响。结果表明,该直喷汽油机尾气颗粒数量排放整体上呈单峰分布,低转速小负荷工况下,粒径<23 nm的颗粒数量较高。随着发动机转速和负荷的增大,峰值粒径向大粒径方向移动。直喷汽油机尾气颗粒物由“核‒壳”结构基本碳粒子堆积形成,呈链状、枝状、簇状等结构;负荷增大,颗粒物尺寸略有增大,基本碳粒子重叠度增强,分形维数增大;转速增大,颗粒物尺寸减小,基本碳粒子重叠度减弱,分形维数减小。随着排气输运的进行,颗粒数量逐渐降低;TWC不影响颗粒的粒径分布形态,颗粒数量净化效率41.6%~94.2%,对<23 nm的小粒径颗粒净化效果较好,低转速小负荷工况的颗粒数量净化效率较高;GPF的颗粒数量净化效率约80%,23~100 nm颗粒数量净化效率较高,对粒径<10 nm的颗粒净化作用不大。TWC和GPF不影响颗粒物结构形式, TWC和GPF后颗粒物基本碳粒子重叠度减弱,分形维数减小。
缸内直喷(gasoline direct injection, GDI)汽油机具有压缩比大、热效率高、燃油经济性好等优点,已成为轻型车主流动
国内外学者开展了大量针对GDI汽油机尾气颗粒数量和粒径分布的研究,分析了发动机工况、燃油组分、空燃比、喷油策略、废气再循环(exhaust gas recirculation, EGR)等对颗粒数量和粒径分布的影响。研究发现,GDI汽油机尾气颗粒包括粒径<50 nm的核膜态颗粒和粒径>50 nm的聚集态颗
随着研究的深入,除颗粒数量和粒径分布外,国内外学者开展了GDI汽油机颗粒物微观形貌研究。结果表明,GDI汽油机尾气颗粒主要呈链状、枝状、环状、簇状等不规则形
本文开展某一国Ⅵ直喷汽油机颗粒数量、粒径分布及颗粒微观形貌排气输运演变研究,试验研究发动机高/低转速、高/低负荷等不同工况、TWC前、TWC后和GPF后3个位置的颗粒数量、粒径分布、微观形貌、分形维数的排气输运演变特性,解析其排气输运演变规律,为GDI汽油机颗粒控制提供参考依据。
试验发动机为一台面向国Ⅵ(b)开发的4缸增压直喷汽油机,其主要参数如
参数 | 数值 |
---|---|
排量/ L | 1.4 |
(缸径×行程)/ (mm×mm) | 74.5×80.0 |
标定功率/ kW | 110 |
最大功率转速/(r·mi | 5 000~6 000 |
最大转矩/(N·m) | 250 |
最大扭矩转速/(r·mi | 1 750~3 000 |
压缩比 | 10 |
方式 | 催化剂种类 | 载体规格/(cm×cm) | 目数 |
---|---|---|---|
TWC | Pt/Pd/Rh | Φ11.8×10.2 | 600 |
GPF | Pd/Rh | Φ13.2×10.2 | 300 |
试验设备包括发动机台架控制台、颗粒数量及粒径分布在线测量系统、颗粒物采集系统和颗粒物离线分析系统。试验分别在TWC前、TWC后和GPF后3个位置抽取部分尾气,经射流稀释器稀释后通过颗粒物粒径谱仪测量颗粒数量和粒径分布,采样流量为10 L·mi

图1 试验装置示意图
Fig.1 Schematic of experiment setup
研究表明,GDI汽油机在中低转速、中低负荷下,核膜态颗粒物存在极大
工况 | 转速/ (r·mi | 平均有效压力/ MPa | 喷油压力/ MPa | 喷油时刻/ (°CA) | 喷油持续时间/ ms | 过量空气系数 | 喷油模式 |
---|---|---|---|---|---|---|---|
1 | 2 000 | 0.2 | 18 | 272 | 0.81 | 1 | 单次喷射 |
2 | 2 000 | 0.8 | 35 | 269 | 1.55 | 1 | 单次喷射 |
3 | 4 500 | 0.2 | 19 | 313 | 0.87 | 1 | 单次喷射 |
4 | 4 500 | 0.8 | 35 | 297 | 1.61 | 1 | 单次喷射 |
该GDI汽油机不同工况,TWC前、TWC后和GPF后3个位置的颗粒数量排放如
工况 | 总颗粒数量/(1 | ||
---|---|---|---|
TWC前 | TWC后 | GPF后 | |
1 | 5 690.00 | 332.00 | 102.00 |
2 | 84.00 | 44.90 | 5.03 |
3 | 551.00 | 269.00 | 79.40 |
4 | 233.00 | 136.00 | 48.60 |
同时由
为研究颗粒数量排放与发动机工况的关系,选择“(kW·h

图2 不同工况、采样位置的颗粒数量粒径分布
Fig.2 Particle size distribution in different working conditions and positions
由
同时由
该GDI汽油机4种试验工况,TWC前、TWC后和GPF后3个位置5.6~10 nm、10~23 nm、23~50 nm和50~560 nm不同粒径段的颗粒数量如
工况 | 颗粒数量/(1 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
5.6~10 nm | 10~23 nm | 23~50 nm | 50~560 nm | |||||||||
TWC前 | TWC后 | GPF后 | TWC前 | TWC后 | GPF后 | TWC前 | TWC后 | GPF后 | TWC前 | TWC后 | GPF后 | |
1 | 3 370.00 | 220.00 | 82.80 | 2 240.00 | 71.80 | 18.10 | 72.40 | 24.00 | 0.45 | 14.30 | 16.30 | 0.37 |
2 | 7.87 | 4.86 | 3.77 | 22.80 | 4.91 | 0.99 | 29.20 | 15.70 | 0.14 | 24.20 | 19.40 | 0.13 |
3 | 4.04 | 1.21 | 0.85 | 118.00 | 16.40 | 13.60 | 243.00 | 103.00 | 25.04 | 186.00 | 151.00 | 36.80 |
4 | 0.67 | 0.04 | 0.06 | 30.40 | 6.45 | 1.69 | 90.20 | 35.60 | 8.91 | 112.00 | 94.30 | 37.90 |
由
尾气颗粒由基本碳粒子在热电泳力、范德华力等作用下,经过碰撞、表面生长、凝结成核、氧化等过程形

图3 不同工况、采样位置的典型颗粒物微观形貌
Fig.3 Typical particle nanostructure in different working conditions and positions
通过IMAGE J等图像处理软件对TEM图像进行处理,测量统计不同工况、不同位置下的基本碳粒子直径。由于颗粒物形状不规则,采用颗粒物不同方向的平均粒径值(费雷特直径)近似,同时采用多次测量取平均值的方法保证测量的准确性,每一工况与位置下各自取约100个基本碳粒子直径。基本碳粒子直径均值随工况、位置的变化如
工况 | 颗粒物基本碳粒子直径均值/nm | ||
---|---|---|---|
TWC前 | TWC后 | GPF后 | |
1 | 36.30 | 37.85 | 35.72 |
2 | 39.05 | 39.59 | 38.99 |
3 | 28.87 | 35.32 | 33.36 |
4 | 31.15 | 28.15 | 37.75 |
分析
随着排气输运的进行,尾气颗粒经过TWC后,颗粒物尺寸略微增大,但颗粒物中浅色区域增加,基本碳粒子重叠度减弱,部分基本碳粒子内核层状碳晶结构清晰,说明颗粒物在TWC中发生了一定程度的氧化。颗粒流经GPF后,部分金属组分在颗粒形成的早期就团聚在一
分形维数是表示粒子数量与粒子直径间相对关系的宏观量。分形维数越大,微粒结构越紧密,粒子间重叠部分越多;反之,分形维数越小,微粒结构越疏松,粒子间重叠部分减少。Brasil
(1) |
式中:Np为颗粒物中所含基本碳粒子的数量;kg为结构系数;Rg为团聚物的回旋半径;rp 为基本碳粒子的平均半径。
回旋半径Rg 用团聚颗粒物的最大投影长度L 间接求得。
(2) |
颗粒物中所含有的基本碳粒子数量Np由
(3) |
式中:Ap为基本碳粒子的投影面积;Aa为颗粒团聚物的投影面积;ka为常量,aa为投影面积指数,二者与平均重叠系数Cov有关,对应关系如
Cov | ka | aa |
---|---|---|
0 | 1.10±0.005 | 1.08±0.003 |
0.15 | 1.20±0.005 | 1.11±0.002 |
0.25 | 1.30±0.006 | 1.13±0.002 |
0.35 | 1.44±0.006 | 1.14±0.002 |
对同一条件下的颗粒物高倍图进行20~25张图的测量,多次测量取均值,获得如

图4 分形维数拟合曲线示意图
Fig.4 Schematic diagram of fitting curve of fractal dimension
该GDI汽油机4种试验工况,TWC前、TWC后和GPF后3个位置的分形维数结果如
工况 | 颗粒物分形维数 | ||
---|---|---|---|
TWC前 | TWC后 | GPF后 | |
1 | 1.66 | 1.58 | 1.16 |
2 | 1.71 | 1.60 | 1.39 |
3 | 1.39 | 1.22 | 0.84 |
4 | 1.58 | 1.54 | 1.19 |
论文分析了国Ⅵ直喷汽油机排气颗粒在尾气后处理系统输运过程中的颗粒数量、粒径分布及微观形貌变化规律,揭示了TWC、GPF对颗粒物数量、粒径分布及微观形貌的影响,研究结果对Ⅵ直喷汽油机后处理系统设计具有较好的参考价值。
(1) GDI汽油机的尾气颗粒数量与其运行工况直接相关。相同转速,颗粒数量随负荷的增大而降低;低负荷工况的尾气颗粒数量随转速的升高而降低;中负荷工况的颗粒数量随转速的升高增加。随着排气输运的进行,尾气中的颗粒数量逐渐降低;TWC颗粒数量净化效率为41.6%~94.2%,低转速小负荷工况的净化效率较高;GPF颗粒数量净化效率约80.0%,高转速的颗粒净化效率较低。
(2) GDI汽油机的尾气颗粒数量整体呈单峰分布,低转速小负荷工况的峰值粒径为10 nm,其他工况的峰值粒径为23~60 nm;随着发动机转速、负荷的增大,峰值粒径向大粒径方向移动。随着排气输运的进行,TWC 后粒径<23 nm的颗粒数量下降明显,但不影响尾气颗粒的粒径分布形态;GPF影响尾气颗粒分布形态,GPF后23~100 nm的颗粒数量下降明显,粒径<10 nm的颗粒数量变化较小。
(3) GDI汽油机的尾气颗粒物由 “核‒壳”结构基本碳粒子堆积形成,呈链状、枝状、簇状等结构;负荷增大,颗粒物尺寸略增大,基本碳粒子重叠度增强,分形维数增大;转速增大,颗粒物尺寸减小,基本碳粒子重叠度减弱,分形维数减小;随着排气输运的进行,TWC和GPF不影响颗粒物的结构形式;TWC后颗粒物尺寸变化不大, GPF后的颗粒物尺寸减小,TWC和GPF后颗粒物的基本碳粒子重叠度减弱,分形维数减小。
作者贡献声明
胡志远:论文框架制定,论文撰写、审阅及修改。
高鑫舜:数据处理,图表绘制,论文撰写与修改。
陆张颖:试验开展,数据收集与处理。
谭丕强:论文审阅与修改。
楼狄明:论文审阅与修改。
参考文献
赵伟. 汽油车国Ⅵ排放法规及颗粒物排放特性分析[J]. 汽车维护与修理, 2021(5): 6. [百度学术]
ZHAO Wei. Analysis of national Ⅵ emission regulations of gasoline vehicles and particulate emission characteristics[J]. Auto Maintenance and Repair, 2021(5): 6. [百度学术]
KITTELSON D, KHALEK I, MCDONALD J, et al. Particle emissions from mobile sources: discussion of ultrafine particle emissions and definition[J]. Journal of Aerosol Science, 2022(159): 105881. [百度学术]
LEE Z, KIM T, PARK S, et al. Combustion, and emission characteristics of recent developed direct-injection spark ignition (DISI) engine system with multi-hole type injector[J]. Fuel, 2020(259): 116209. [百度学术]
马超, 张潇文, 李倩, 等. 轻型汽油车颗粒物数浓度排放特征研究[J]. 环境污染与防治, 2020, 42(5): 547. [百度学术]
MA Chao, ZHANG Xiaowen, LI Qian, et al. Characteristics of particle number concentrations form light-duty gasoline vehicles[J]. Environmental Pollution and Control, 2020, 42(5): 547. [百度学术]
AWAD O I, MA X, KAMIL M, et al. Particulate emissions from gasoline direct injection engines: a review of how current emission regulations are being met by automobile manufacturers[J]. Science of the Total Environment, 2020(718): 137302. [百度学术]
HACHEM M, LOIZEAU M, SALEH N, et al. Short-term association of in-vehicle ultrafine particles and black carbon concentrations with respiratory health in Parisian taxi drivers[J]. Environment International, 2021(147): 106346. [百度学术]
庄祝跃. 喷射策略和燃料属性对直喷汽油机燃烧和颗粒物排放特性的研究[D]. 上海:上海交通大学, 2017. [百度学术]
ZHUANG Zhuyue. Effects of injection strategy and fuel property on combustion and particle emission characteristics of gasoline direct injection engine[D]. Shanghai: Shanghai Jiao Tong University, 2017. [百度学术]
YANG Jiacheng, ROTH Patrick, ZHU Hanwei, et al. Impacts of gasoline aromatic and ethanol levels on the emissions from GDI vehicles. Part 2: influence on particulate matter, black carbon, and nanoparticle emissions[J]. Fuel, 2019(252): 812. [百度学术]
WEBER C, SUNDVOR I, FIGENBAUM E. Comparison of regulated emission factors of Euro 6 LDV in nordic temperatures and cold start conditions: diesel- and gasoline direct-injection[J]. Atmospheric Environment, 2019(206): 208. [百度学术]
许丹丹, 张铁臣. GDI发动机颗粒物排放特性研究[J]. 内燃机与配件, 2017(18): 20. [百度学术]
XU Dandan, ZHANG Tiechen. Study on particulate emission characteristics of GDI engine[J]. Internal Combustion Engine and Parts, 2017(18): 20. [百度学术]
秦艳红, 胡敏, 李梦仁, 等. 缸内直喷汽油机排放PM2.5的理化特征及影响因素[J]. 中国环境科学, 2016, 36(5): 1332. [百度学术]
QIN Yanhong, HU Min, LI Mengren, et al. Physical and chemical characteristics of PM2.5 emissions from gasoline direct injection engine and its influence[J]. China Environmental Science, 2016, 36(5): 1332. [百度学术]
HAN Dong, FAN Yunchu, SUN Zhe, et al. Combustion and emissions of isomeric butanol/gasoline surrogates blends on an optical GDI engine[J]. Fuel, 2020(272): 117690. [百度学术]
ZHANG Mengzhu, GE Yunshan, WANG Xin, et al. Particulate emissions from direct-injection and combined-injection vehicles fueled with gasoline/ethanol match-blends – effects of ethanol and aromatic compositions[J]. Fuel,2021(302): 121010. [百度学术]
ZHANG Miaomiao, HONG Wei, XIE Fangxi, et al. Combustion, performance and particulate matter emissions analysis of operating parameters on a GDI engine by traditional experimental investigation and Taguchi method[J]. Energy Conversion and Management, 2018(164): 344. [百度学术]
石秀勇, 康杨, 倪计民, 等. 直喷汽油机颗粒物生成及排放特性研究进展[J].同济大学学报(自然科学版), 2017, 45(S1): 144. [百度学术]
SHI Xiuyong, KANG Yang, NI Jimin, el al . Research progress in particulate formation mechanism and emission characteristics of gasoline direct injection engine[J]. Journal of Tongji University (Natural Science), 2017, 45(S1): 144. [百度学术]
杨凌川. GDI发动机颗粒物排放特性研究[D]. 天津:河北工业大学, 2015. [百度学术]
YANG Lingchuan. Study on the characteristics of particulate emissions from GDI engine[D]. Tianjin: Hebei University of Technology, 2015. [百度学术]
李超. GDI汽油机燃烧条件及三效催化器对颗粒物物化特性影响规律研究[D]. 天津:天津大学, 2014. [百度学术]
LI Chao. Study on the effect of combustion conditions and three-way catalytic converter on the physicochemical characteristics of particles from GDI engine[D]. Tianjin: Tianjin University, 2014. [百度学术]
钟祥麟,李君,李昂. 三元催化器对GDI车辆PM2.5排放的影响[J]. 汽车科技, 2016(1): 22. [百度学术]
ZHONG Xianglin, LI Jun, LI Ang. Effect of three-way catalytic converter on the PM2.5 emission of GDI vehicle[J]. Auto Sci-tech, 2016(1): 22. [百度学术]
LIU Haoye, LI Ziyang, XU Hongming, et al. Nucleation mode particle evolution in a gasoline direct injection engine with/without a three-way catalyst converter[J]. Applied Energy, 2020(259): 114211. [百度学术]
潘锁柱. 缸内直喷汽油机排气微粒物理化学特征的研究[D]. 天津:天津大学, 2012. [百度学术]
PAN Suozhu. Study on the physicochemical characteristics of exhaust particulates from gasoline direct injection engine[D]. Tianjin: Tianjin University, 2012. [百度学术]
SHARMA N, AGARWAL A K. Macroscopic spray characteristics of a gasohol fueled GDI injector and impact on engine combustion and particulate morphology[J]. Fuel, 2021(295): 120461. [百度学术]
POTENZA M, MILANESE M, RISI A. Effect of injection strategies on particulate matter structures of a turbocharged GDI engine[J]. Fuel, 2019(237): 413. [百度学术]
BOGARRA M, HERREROS J M, TSOLAKIS A, et al. Influence of on-board produced hydrogen and three way catalyst on soot nanostructure in gasoline direct injection engines[J]. Carbon, 2017(120): 326. [百度学术]
SAFFARIPOUR M, CHAN T W, LIU F, et al. Effect of drive cycle and gasoline particulate filter on the size and morphology of soot particles emitted from a gasoline-direct-injection vehicle[J]. Environmental Science & Technology, 2015, 49(19): 11950. [百度学术]
马志豪, 尹振龙, 杜维新, 等.金属型GPF对GDI发动机颗粒物微观特性的影响[J].内燃机学报, 2021, 39(2):130. [百度学术]
MA Zhihao, YIN Zhenlong, DU Weixin, et al. Effect of metal GPF on micro characteristics of particulate matters from GDI engine[J]. Transactions of CSICE, 2021,39(2):130. [百度学术]
HU Zhiyuan, LU Zhangying, SONG Bo, et al. Impact of test cycle on mass, number and particle size distribution of particulates emitted form gasoline direct injection vehicles[J].Science of the Total Environment, 2021(262): 143128. [百度学术]
MATHIS U, KAEGI R, MOHR M, et al. TEM analysis of volatile nanoparticles from particle trap equipped diesel and direct-injection spark-ignition vehicles[J]. Atmospheric Environment, 2004, 38(26):4347. [百度学术]
许京. GDI汽油机颗粒物排放特性分析及颗粒捕集器技术研究[D]. 武汉:武汉理工大学, 2017. [百度学术]
XU Jing. Study on particulate emission characteristics of GDI engine and optimization of gasoline particulate filter[D]. Wuhan: Wuhan University of Technology, 2017. [百度学术]
邓志坤. 缸内直喷汽油机微粒捕集器性能及结构优化的仿真研究[D]. 天津:河北工业大学, 2016. [百度学术]
DENG Zhikun. Simulation to performance and structure optimization of gasoline particulate filter[D]. Tianjin: Hebei University of Technology, 2016. [百度学术]
朱伟. 缸内直喷汽油机GPF过滤特性研究[J]. 上海汽车, 2018(6):8. [百度学术]
ZHU Wei. Research of GPF character of in-cylinder direction injection gasoline engine[J]. Shanghai Auto, 2018(6):8. [百度学术]
CHUAHY F D F, MOSES-DEBUSK M, CURRAN S J, et al. The effects of distillation characteristics and aromatic content on low-load gasoline compression ignition (GCI) performance and soot emissions in a multi-cylinder engine[J]. Fuel, 2021(299): 120893. [百度学术]
LIU Haoye, LI Ziyang, ZHANG Mengzhu, et al. Exhaust non-volatile particle filtration characteristics of three-way catalyst and influencing factors in a gasoline direct injection engine compared to gasoline particulate filter[J]. Fuel, 2021(290): 120065. [百度学术]
王亚, 李君, 刘宇,等. 机外净化技术对GDI发动机颗粒排放的影响[J]. 车用发动机, 2016(5): 57. [百度学术]
WANG Ya, LI Jun, LIU Yu, et al. Influence of external purification technology on particulate emission of GDI engine[J]. Vehicle Engine, 2016(5): 57. [百度学术]
BENAJES J, GARCÍA A, MONSALVE-SERRANO J, et al. Gaseous emissions and particle size distribution of dual-mode dual-fuel diesel-gasoline concept from low to full load[J]. Applied Thermal Engineering, 2017(120): 138. [百度学术]
CATAPANO F, IORIO S D, MAGNO A, et al. Effect of fuel quality on combustion evolution and particle emissions from PFI and GDI engines fueled with gasoline, ethanol and blend, with focus on 10~23 nm particles[J]. Energy, 2022, 239(B): 122198. [百度学术]
GONG J, STEWART M L, ZELENYUK A, et al. Importance of filter’s microstructure in dynamic filtration modeling of gasoline particulate filters (GPFs): inhomogeneous porosity and pore size distribution[J]. Chemical Engineering Journal, 2018(338): 15. [百度学术]
PFAU S A, LA ROCCA A, HAFFNER-STATON E, et al. Comparative nanostructure analysis of gasoline turbocharged direct injection and diesel soot-in-oil with carbon black[J]. Carbon, 2018(139): 342. [百度学术]
HU Zhiyuan, LU Zhangying, ZHANG Haochen, et al. Effect of oxidation temperature on oxidation reactivity and nanostructure of particulate matter from a China ⅥGDI vehicle[J]. Atmospheric Environment, 2021(256): 118461. [百度学术]
MENG Zhongwei, CHEN Zhao, TAN Jie, et al. Regeneration performance and particulate emission characteristics during active regeneration process of GPF with ash loading[J]. Chemical Engineering Science, 2022, 248(A): 117114. [百度学术]
BRASIL A M, FARIAS T L, KOYLU U O, et al. A recipe for image characterization of fractal-like aggregates [J]. Journal of Aerosol Science, 1998, 29(S2): 1275. [百度学术]