摘要
采用严格的增量动力分析(IDA)方法对砂土场地桥梁群桩基础的延性性能开展了系统研究。基于砂土中单墩‒群桩基础体系振动台试验验证了数值模拟方法;以实际工程为背景,考虑与结构、土体相关的9个参数,建立了一系列分析模型;将7条实际地震记录作为输入,进行了系统的增量动力分析。基于计算结果,对地震下桥梁群桩基础的损伤破坏过程进行了验证,提出了表征群桩基础延性性能的位移、转角、强度3个指标,并揭示了各性能指标随结构、土体参数的变化规律。结果表明,群桩基础在易修复状态下的平均位移延性系数为2.52,平均水平承载力为首次屈服状态的1.41倍;极限状态下平均位移延性系数为3.62,平均水平承载力为首次屈服状态的1.47倍,延性性能可观且稳定;承台转动引起的桥墩漂移率最大不超过0.7%,不控制抗震设计。
群桩基础是桥梁工程中广泛采用的基础形式。为了方便震后损伤的检查和修复,各国现行桥梁抗震设计规范多采用对群桩基础进行能力保护的抗震设计策略,即桥墩作为延性构件进行塑性耗能,而群桩基础作为能力保护构件保持弹性。这样的设计策略对群桩基础的水平承载力提出较高的要求,实际工程中往往需要采用较高的桩截面配筋率。然而,对于高桩承台基础或是遭受河床冲刷后的群桩基础,桩基外露导致水平承载能力降低,而且损伤部位有从桥墩向桩基转移的趋
目前,针对桥梁群桩基础延性性能的研究主要采用3种简化的静力分析方法。第1种方法,单独研究群桩基础中的单桩,即将桩顶转动自由度约束后在桩顶进行水平静力加载。基于该方法,Song
本文采用增量动力分析(IDA
商宇

图1 振动台试验及数值模型示意图(单位:cm)
Fig.1 Schematic diagram of shake-table test and numerical model(unit: cm)
基于OpenSee
(1) |
式中:p(y)为土层深度H处桩土相对位移y时的桩侧土压力;A为荷载系数(循环荷载取0.9);k为初始地基反力系数,是砂土内摩擦角的函数,按ATC‒32规
(2) |
式中:C1~C3为系数,是内摩擦角的函数,根据API规
(3) |
式中:t(z)为桩土竖向相对位移z时的桩侧摩阻力;Ef为桩侧摩阻力的初始模量,是内摩擦角的函数,采用Moshe
(4) |
式中,φ为以弧度为单位的内摩擦角。由于试验中桩尖的实际约束条件并非理想的固定约束,在数值模型中假设了一组线弹性弹簧,并以结构基本周期为目标,将弹簧刚度标定为40 000 kN·
振动台试验采用缩至0.4g峰值加速度的Chi-chi地震实测加速度记录(见

图2 振动台试验与数值模型结构响应对比
Fig.2 Comparison of structural responses between shake-table test and numerical model
基于长江下游砂土场地受冲刷影响的实际桥梁工程,给出了桥梁群桩基础延性性能的分析模型,如

图3 桥梁分析模型
Fig.3 Studied bridge model
工况 | N | d/m | ρl/% | ρs/% | S | h/m | α/% | La/m | Dr/% |
---|---|---|---|---|---|---|---|---|---|
C0 (基准工况) | 3 | 1.5 | 1.0 | 1.0 | 3.0d | 9 | 20 | 3 | 55 |
C1 | 2 | 1.5 | 1.0 | 1.0 | 3.0d | 9 | 20 | 3 | 55 |
C2 | 4 | 1.5 | 1.0 | 1.0 | 3.0d | 9 | 20 | 3 | 55 |
C3 | 3 | 1.2 | 1.0 | 1.0 | 3.0d | 9 | 20 | 3 | 55 |
C4 | 3 | 1.8 | 1.0 | 1.0 | 3.0d | 9 | 20 | 3 | 55 |
C5 | 3 | 1.5 | 0.5 | 1.0 | 3.0d | 9 | 20 | 3 | 55 |
C6 | 3 | 1.5 | 1.5 | 1.0 | 3.0d | 9 | 20 | 3 | 55 |
C7 | 3 | 1.5 | 1.0 | 0.5 | 3.0d | 9 | 20 | 3 | 55 |
C8 | 3 | 1.5 | 1.0 | 1.5 | 3.0d | 9 | 20 | 3 | 55 |
C9 | 3 | 1.5 | 1.0 | 1.0 | 2.5d | 9 | 20 | 3 | 55 |
C10 | 3 | 1.5 | 1.0 | 1.0 | 3.5d | 9 | 20 | 3 | 55 |
C11 | 3 | 1.5 | 1.0 | 1.0 | 3.0d | 3 | 20 | 3 | 55 |
C12 | 3 | 1.5 | 1.0 | 1.0 | 3.0d | 15 | 20 | 3 | 55 |
C13 | 3 | 1.5 | 1.0 | 1.0 | 3.0d | 9 | 10 | 3 | 55 |
C14 | 3 | 1.5 | 1.0 | 1.0 | 3.0d | 9 | 30 | 3 | 55 |
C15 | 3 | 1.5 | 1.0 | 1.0 | 3.0d | 9 | 20 | 0 | 55 |
C16 | 3 | 1.5 | 1.0 | 1.0 | 3.0d | 9 | 20 | 6 | 55 |
C17 | 3 | 1.5 | 1.0 | 1.0 | 3.0d | 9 | 20 | 3 | 35 |
C18 | 3 | 1.5 | 1.0 | 1.0 | 3.0d | 9 | 20 | 3 | 75 |
注: 桩中心距S为2.5d、3.0d和3.5d时群桩效应系数分别取0.7、0.8以及0.
ID
了解结构的损伤破坏过程是研究其延性性能的基础。已往研

图4 基准工况C0的损伤破坏过程
Fig.4 Failure process of reference case C0

图5 基准工况C0下力‒位移关系和承台转角‒位移关系
Fig.5 Force-displacement and rotation-displacement relationships of reference case C0
由
(5) |
(6) |
(7) |
(8) |
式中:μΔ,y为易修复位移延性系数;RF,y为易修复承载力提高系数;Δy、Fy分别为群桩基础首次屈服时承台中心的位移、承台底水平剪力;Δy,under、Fy,under分别为群桩基础桩身首次屈服时承台中心的位移、承台底水平剪力;μΔ,u为极限位移延性系数;RF,u为极限承载力提高系数;Δu、Fu分别为群桩基础外排桩顶核心混凝土压溃时承台中心的位移、承台底水平剪力。由

图6 桩排数对力‒位移关系和承台转角‒位移关系的影响
Fig.6 Impact of pile row number on force-displacement and rotation-displacement relationships

图7 桩径对力‒位移关系和承台转角‒位移关系的影响
Fig.7 Impact of pile diameter on force-displacement and rotation-displacement relationships

图8 桩配筋率对力‒位移关系和承台转角‒位移关系的影响
Fig.8 Impact of pile longitudinal reinforcement ratio on force-displacement and rotation-displacement relationships

图9 桩配箍率对力‒位移关系和承台转角‒位移关系的影响
Fig.9 Impact of pile transverse reinforcement ratio on force-displacement and rotation-displacement relationships

图10 桩中心距对力‒位移关系和承台转角‒位移关系的影响
Fig.10 Impact of pile spacing on force-displacement and rotation-displacement relationships

图11 墩高对力‒位移关系和承台转角‒位移关系的影响
Fig.11 Impact of pier height on force-displacement and rotation-displacement relationships

图12 桩轴压比对力‒位移关系和承台转角‒位移关系的影响
Fig.12 Impact of pile axial load ratio on force-displacement and rotation-displacement relationships

图13 冲刷深度对力‒位移关系和承台转角‒位移关系的影响
Fig.13 Impact of scour depth on force-displacement and rotation-displacement relationships

图14 土体相对密实度对力‒位移关系和承台转角‒位移关系的影响
Fig.14 Impact of soil relative density on force-displacement and rotation-displacement relationships
工况 | μΔ,y | RF,y | θy,under /(1 | μΔ,u | RF,u | θu/(1 |
---|---|---|---|---|---|---|
均值 | 2.52 | 1.41 | 2.04 | 3.62 | 1.47 | 2.63 |
最大值 | 2.95 | 1.46 | 4.57 | 6.17 | 1.65 | 6.77 |
最小值 | 1.87 | 1.32 | 1.15 | 2.45 | 1.36 | 1.32 |
标准差 | 0.23 | 0.03 | 0.69 | 0.72 | 0.06 | 1.13 |
变异系数(均值/标准差)/% | 9.3 | 2.4 | 34.0 | 19.8 | 4.4 | 43.0 |
(1) IDA结果验证了以往研究通过静力分析得到的桥梁群桩基础的地震破坏过程:外排桩顶、中排桩顶、外排桩身和中排桩身依次屈服,最终外排桩顶核心混凝土压溃,达到极限状态。当桩的配箍率过低时(如0.5%)或轴压比较大时(如30%),外排桩顶截面的压溃会十分接近甚至先于外排桩身截面的屈服。
(2) 从震后易修复的角度出发,桩排数、中心距、直径、配箍率和轴压比越大,墩高、土体相对密实度、桩配筋率越小,群桩基础的延性性能越好。
(3) 桥梁群桩基础易修复、极限位移延性系数的均值分别为2.52、3.62,变异系数分别小于10%、20%,易修复、极限水平承载力提高系数的均值分别为1.41、1.47,变异系数均不足5%,延性性能良好且稳定。承台转动引起的桥墩漂移率最大不超过0.7%,不控制抗震设计。
需要说明的是,本文结论适用于砂土场地群桩基础的延性抗震设计。后续将对黏土场地及砂土‒黏土多层场地的群桩基础延性抗震性能开展研究。
作者贡献声明
王靖程:模型计算,理论分析及论文撰写与修改。
叶爱君:研究选题,基金支持及论文框架指导。
王晓伟:论文框架指导,论文修改。
参考文献
SONG S T, HU T F, CHIOU D J. Influence of riverbed scour on the performance of bridges subjected to lateral seismic loads[J]. Journal of Earthquake Engineering, 2022, 26(5): 2251. [百度学术]
XU Y, SHANG Y, YE A. Dynamic interaction between bridge pier and its large pile foundation considering earthquake and scour depths[J]. Advances in Structural Engineering, 2016, 19(9): 1390. [百度学术]
SONG S T, WANG C Y, HU T F. Displacement ductility limits for pile foundations in cohesionless soils[J]. Journal of Earthquake Engineering, 2018, 22(4): 595. [百度学术]
CHIOU J S, TSAI Y C. Displacement ductility capacity assessment for a fixed-head pile in cohesionless soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(1): 1. [百度学术]
WANG X, YE A, HE Z, et al. Quasi-static cyclic testing of elevated RC pile-cap foundation for bridge structures[J]. Journal of Bridge Engineering, 2016, 21(2): 04015042. [百度学术]
LIU T, WANG X, YE A. Roles of pile-group and cap-rotation effects on seismic failure mechanisms of partially-embedded bridge foundations: quasi-static tests[J]. Soil Dynamics and Earthquake Engineering, 2020, 132: 106074. [百度学术]
ZHOU L, BARBATO M, YE A. Experimental investigation of postearthquake vertical load-carrying capacity of scoured reinforced concrete pile group bridge foundations[J]. Journal of Bridge Engineering, 2021, 26(12): 04021091. [百度学术]
王晓伟,BLANCO G, 叶爱君. 砂土中桥梁高桩承台基础的抗震延性能力参数分析[J]. 土木工程学报,2018, 51(5): 112. [百度学术]
WANG Xiaowei, BLANCO G, YE Aijun, et al. Parametric study on seismic ductility capacity of bridge elevated pile-cap foundation in sand[J]. China Civil Engineering Journal, 2018, 51(5): 112. [百度学术]
ZHANG X, YU S, WANG W, et al. Nonlinear seismic response of the bridge pile foundation with elevated and embedded caps in frozen soils[J]. Soil Dynamics and Earthquake Engineering, 2022, 161: 107403. [百度学术]
VAMVATSIKOS D, CORNELL C A. Incremental dynamic analysis[J]. Earthquake Engineering and Structural Dynamics, 2002, 31(3): 491. [百度学术]
商宇,叶爱君,王晓伟. 冲刷条件下的桩基桥梁振动台试验[J]. 中国公路学报, 2017, 30(12): 280. [百度学术]
SHANG Yu, YE Aijun, WANG Xiaowei. Shake table test of pile-supported bridge under scour condition[J]. China Journal of Highway and Transport, 2017, 30(12): 280. [百度学术]
MCKENNA F. OpenSees: a framework for earthquake engineering simulation[J]. Computing in Science and Engineering, 2011, 13(4): 58. [百度学术]
API. Recommended practice for planning, designing and constructing fixed offshore platforms : working stress design[M]. Washington DC:Americn Petroleum Institute, 2005. [百度学术]
ATC (Applied Technology Council). Improved seismic design criteria for California bridges, provisional recommendations: ATC-32[S]. Redwood City: ATC, 1996. [百度学术]
MOKWA R L. Investigation of the resistance of pile caps to lateral loading[D]. Blacksburg: Virginia Polytechnic Institute and State University, 1999. [百度学术]
MOSHER R L. Load-transfer criteria for numerical analysis of axially loaded piles in sand. Part 1:load-transfer criteria[R]. Vicksburg: US Army Engineer Waterways Experiment Station, 1984. [百度学术]
KULHAWY F H. Foundation engineering handbook[M]. Boston: Springer, 1991. [百度学术]
MANDER J B, PRIESTLEY M J N, PARK R. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114(8): 1804. [百度学术]
POWER M, CHIOU B, ABRAHAMSON N, et al. An overview of the NGA project[J]. Earthquake Spectra, 2008, 24(1): 3. [百度学术]