摘要
为了分析化学风化对岩石力学性能的影响机制,采用密集排列的颗粒集合体模拟岩石材料,将与化学风化时间相关的质量损失率引入颗粒刚度和胶结模型。基于均匀化方法和格构模型,推导获得了风化岩石弹性阶段应力‒应变关系和强度准则以及宏观弹性和强度参数与微观参数(颗粒接触响应特性、风化损伤参数等)的定量关联,并探究了化学风化及其时效性对岩石力学性能的影响规律。结果表明,随着质量损失率的增大以及反应时间的增加,风化岩石的刚度和强度均呈负指数减小;当环境pH值较低时,岩石的峰值黏聚力和峰值内摩擦角随着反应时间的增大均显著降低;当环境pH值较高时,开始阶段岩石的峰值黏聚力显著降低,而峰值内摩擦角变化不大,峰值内摩擦角的显著降低需要更长的风化时间。
岩石作为水利水电、交通线路工程中最基础、最重要的岩土介质,其力学性质及演化直接影响工程安全和稳定
借助扫描电子显微镜(SEM)和X射线CT图像扫描(X-ray CT)等先进微观观测技术,研究人员针对各地的风化岩石开展了大量的微观观察试验,探究了岩石风化过程中矿物颗粒间胶结在水作用下的破坏情
由Cundall
理论模型方面,目前化学风化对于岩石试样力学特性的弱化作用大多通过基于唯象的损伤力学模型来描
在颗粒材料细观力学模型的框架下,通过引入能够反映岩石化学风化的微观胶结力学模型,建立考虑岩石化学风化的细观力学模型,推导适用于岩石的宏微观定量关联解答,用以直接探究不同孔隙率下化学风化对岩石宏观力学行为的影响规律,进一步对岩石化学风化的长期时效效应进行分析。
从离散元法的基本原理出发,考虑到本文研究内容为风化对宏观特性的影响规律而非颗粒排布方式,因此将岩石概化为由同一粒径圆盘形颗粒以紧密、规则的排列方式形成的胶结颗粒集合体(见

图1 颗粒模型和等效格构模型示意图
Fig.1 Schematic diagram of particle assembly and equivalent lattice model
如
在颗粒排列方式确定后,RVE力学响应主要受控于梁单元的力学特性。考虑到本文的研究对象为风化岩石,因此梁单元力学特性采用考虑化学风化的二维粒间接触模
(1) |
其中,。通过
, , | (2) |
式中:Fi、Ki、xi(i=n,v,m)分别为沿i方向的接触力/力矩、接触刚度以及相对位移/转角;n、v、m分别表示法向、切向、弯转向。接触刚度Ki包括颗粒法向刚度Knp和胶结法向刚度Knb两部分的贡献。考虑到胶结具有两端向内凹陷的不规则形状特点,胶结法向刚度Knb通过在整个胶结宽度W上积分得到:
(3) |
式中,E0为胶结弹性模量。粒间接触的切向刚度Kv和弯转向刚度Km通过切向‒法向刚度比λ=Kv/Kn和弯转向‒法向刚度比ξ=Km/Kn定义。

图2 胶结接触模型示意图
Fig.2 Schematic diagram of bonded contact model
根据室内胶结铝棒单轴拉伸、压缩以及压剪扭复杂加载路径试验,结合前人提出的胶结强度包线表达
(4) |
(5) |
(6) |
(7) |
(8) |
式中:Ft、Fc、Fs、Fr分别为胶结的峰值拉伸、压缩、剪切、扭转荷载;σc、σt分别为胶结单轴抗压和抗拉强度;ζ、β分别为胶结延伸率和长细比,ζ=W/D,β=hmin/W;f为表征法向力水平的法向应力比,f=(Fn+Ft)/(Fc+Ft);L为z方向单位长度。
根据室内微观观测结果,化学风化将削弱晶粒之间的胶结或引起矿物颗粒腐
, | (9) |
式中:W0、knp,0分别为化学风化前胶结宽度和颗粒法向刚度;αcri为临界质量损失率。质量损失率达到αcri时试样强度很小,可认为胶结物已经全部溶解。将
小变形假定下,均匀化理论认为离散颗粒体内部的应力场或者应变场均匀,即著名的Reuss’s假设(静态假设
(10) |
式中:、分别为x、y方向的应力;、分别为x、y方向的应变。以胞元UC-2为例可以得到同样的结果,具体推导过程见Chang
, | (11) |
为获得RVE的强度(即宏观强度),在

图3 RVE荷载条件以及格构梁破坏模式
Fig.3 Loading conditions of RVE and failure modes of beams
限于篇幅,本文不再展示具体的推导过程,详细推导过程和验证可参考已有成
(12) |
(13) |
式中:σ1、σ1,peak分别表示材料在初始围压σ3下的初始屈服强度和峰值强度;Ac、Bc为量纲一的初始屈服强度参数,是刚度比λ和ξ的函数;Dc、Pc、Qc、Lc、Mc、Nc为量纲一的峰值强度参数,是胶结峰值拉压荷载比以及胶结内摩擦系数μb的函数。初始屈服强度包线满足Mohr-Coulomb(MC)强度准则,受刚度比λ和ξ以及微观粒间抗拉强度Ft/D的控制。峰值强度包线在主应力空间上与岩石常用的Hoek-Brown(HB)强度准则类似,由线性部分和非线性部分组成。根据MC强度准则以及HB强度准则的定义,初始屈服强度参数为:
(14) |
(15) |
(16) |
式中:σu,ini、cini、φini分别为初始屈服强度对应的初始单轴抗压强度、初始黏聚力和初始内摩擦角;。峰值强度参数为:
(17) |
(18) |
(19) |
(20) |
式中:σT为材料的单轴抗拉强度;σu,peak、cpeak、φpeak分别为峰值强度对应的峰值单轴抗压强度、峰值黏聚力和峰值内摩擦角;Xt、Yt、Zt为量纲一的峰值强度参数,是胶结峰值拉压荷载比η(=Ft/Fc)以及胶结内摩擦系数μb的函数。从式(
基于宏微观定量关联式,探究风化对某一典型砂岩宏观力学参数及时效性的影响规律。
微观参数 | 数值 | 宏观参数 | 数值(室内试 |
---|---|---|---|
颗粒直径,D/mm | 1 | 弹性模量,E/GPa | 3.64(3.60) |
初始胶结宽度,W0/mm | 0.3 | 峰值单轴抗压强度,σu,peak/MPa | 68.1(63.0) |
胶结弹性模量,E0/MPa | 45 | 单轴抗拉强度,σT/MPa | 4.2 |
颗粒法向刚度,Knp/(MN∙ | 100 | 峰值黏聚力,cpeak/MPa | 17.2 |
切向‒法向刚度比,λ | 0.1 | 内摩擦角,φ/(°) | 45.7 |
弯转向‒法向刚度比,ξ/m | 0.15 | 孔隙率,n/% | 7.81 |
胶结单轴抗拉强度,σt/MPa | 12 | ||
胶结单轴抗压强度,σc/MPa | 150 | ||
最小胶结厚度,hmin/μm | 1、5、10、20、50、100 |

图4 不同孔隙率下弹性模量比随质量损失率的变化
Fig.4 Variation of elastic modulus ratio with mass loss ratio under different porosities

图5 不同孔隙率下抗压强度随质量损失率的变化
Fig.5 Variation of compressive strength with mass loss ratio under different porosities

图6 不同孔隙率下强度参数随质量损失率的变化
Fig.6 Variation of strength parameters with mass loss ratio under different porosities

图7 不同孔隙率下单轴抗拉强度比随质量损失率的变化
Fig.7 Variation of uniaxial tensile strength ratio with mass loss ratio under different porosities
酸性环境下,岩石中的钙质主要与氢离子
(21) |
式中:γ为反应速率;mt、m0分别为风化后t时刻和初始时刻钙物质的质量;M为钙元素摩尔质量;V为溶液体积。根据

图8 不同pH值下弹性及强度参数随反应时间的变化
Fig.8 Variation of elastic and strength parameters with reaction time under different pH values
(1) 随着化学风化过程的进行,试样弹性模量比随着质量损失率的增大呈负指数减小。风化开始时,孔隙率越大弹性模量比变化率越大;当孔隙率较小时,弹性模量比变化率先增大后减小,而当孔隙率较大时,弹性模量比变化率始终减小。相同质量损失率α下,孔隙率越大弹性模量比越小。
(2) 初始屈服强度比、峰值强度比及初始黏聚力随着质量损失率的增大呈负指数减小。相同质量损失率α下,孔隙率越大,初始屈服强度比越大,峰值强度比越小,初始黏聚力越大。峰值内摩擦角随α先增大后减小并迅速收敛于30°附近,相同质量损失率α下孔隙率越大,峰值内摩擦角越小。单轴抗拉强度及其变化率随着质量损失率的增大而非线性减小,孔隙率对单轴抗拉强度的影响不明显。
(3) 弹性模量比、峰值强度比和峰值黏聚力及其三者的变化率随着化学风化反应时间t增大呈负指数减小,相同时间段内减小程度随pH值的减小而增大。峰值内摩擦角随着化学风化反应时间t先轻微增大后迅速减小并跌落到30°附近。对于pH值较低溶液中的岩石,岩石的峰值黏聚力和峰值内摩擦角随着反应时间的增大均显著降低;对于pH值较高溶液中的岩石,开始阶段岩石的峰值黏聚力显著降低,而峰值内摩擦角变化不大,峰值内摩擦角的显著降低需要更长的反应时间。
作者贡献声明
周志豪:公式推导,参数分析,论文撰写。
王华宁:项目负责人,论文修改。
蒋明镜:项目负责人,研究思路指导,论文修改。
参考文献
王建秀, 朱合华, 唐益群, 等. 石灰岩损伤演化的化学热力学及动力学模型[J]. 同济大学学报(自然科学版), 2004, 32(9): 1126. [百度学术]
WANG Jianxiu, ZHU Hehua, TANG Yiqun,et al. Chemical thermodynamic and chemical kinetic model for dissolution damage evolution in limestone [J]. Journal of Tongji University (Natural Science), 2004, 32(9): 1126. [百度学术]
CUI Q L, SHEN S L, XU Y S, et al. Mitigation of geohazards during deep excavations in Karst regions with caverns: a case study [J]. Engineering Geology, 2015, 195: 16. [百度学术]
CUI Q L, WU H N, SHEN S L, et al. Protection of neighbour buildings due to construction of shield tunnel in mixed ground with sand over weathered granite [J]. Environmental Earth Sciences, 2016, 75: 1. [百度学术]
杨振峰, 缪林昌. 粉砂质泥岩的强度衰减与环境效应试验研究[J]. 岩石力学与工程学报, 2007, 26(12): 2576. [百度学术]
YANG Zhenfeng, MIAO Linchang. Experimental study on silty mudstone strength attenuation and environmental effect [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(12): 2576. [百度学术]
LIN X X, WU Z J, WANG G, et al. Research on the softening and disintegration mechanism of carbonaceous shale [J]. Advanced Materials, 2013, 671: 274. [百度学术]
BONNET M, CANER L, SIITARI-KAUPPI M, et al. Weathering of Viamão granodiorite, south Brazil. Part 2: initial porosity of un-weathered rock controls porosity development in the critical zone [J]. Geoderma, 2023, 429: 116247. [百度学术]
LI H, ZHONG Z L, LIU X R, et al. Micro-damage evolution and macro-mechanical property degradation of limestone due to chemical effects[J].International Journal of Rock Mechanics and Mining Sciences, 2018, 110: 257. [百度学术]
LIN Y, ZHOU K P, GAO R G, et al. Influence of chemical corrosion on pore structure and mechanical properties of sandstone[J]. Geofluids, 2019, 2019: 7320536. [百度学术]
ZHANG J, DENG H W, TAHERI A, et al. Degradation of physical and mechanical properties of sandstone subjected to freeze-thaw cycles and chemical erosion[J]. Cold Regions Science and Technology, 2018, 155: 37. [百度学术]
CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies [J]. Géotechnique, 1979, 29(1): 47. [百度学术]
PARK B, MIN K B. Bonded-particle discrete element modeling of mechanical behavior of transversely isotropic rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 76: 243. [百度学术]
JIANG M J, LIAO Z W, ZHANG N, et al. Discrete element analysis of chemical weathering on rock [J]. European Journal of Environmental and Civil Engineering, 2015, 19: s15. [百度学术]
LI H, ESHIET K I, SHENG Y, et al. A parallel-bonded chemical corrosion model for discrete element modelling of chemically corroded limestone [J]. Engineering Fracture Mechanics, 2018, 202: 297. [百度学术]
丁梧秀, 冯夏庭. 化学腐蚀下裂隙岩石的损伤效应及断裂准则研究[J]. 岩土工程学报, 2009, 31(6): 899. [百度学术]
DING Wuxiu, FENG Xiating. Damage effect and fracture criterion of rock with multi-preexisting cracks under chemical erosion [J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 899. [百度学术]
冯晓伟, 王伟, 王如宾,等. 考虑水化学损伤的砂岩流变损伤本构模型[J]. 岩土力学, 2018, 39(9): 3340. [百度学术]
FENG Xiaowei, WANG Wei, WANG Rubin, et al. A rheological damage model of sandstone under water-rock chemical interaction [J]. Rock and Soil Mechanics, 2018, 39(9): 3340. [百度学术]
CIANTIA M O, CASTELLANZA R, DI P C. Chemo-mechanical weathering of calcarenites: experiments and theory [M]. London: Taylor & Francis Group, 2013. [百度学术]
邓涛, 廖军, 王陈宾, 等. 不同风化程度下灰岩抗剪强度特性及估算模型研究[J]. 水文地质工程地质, 2022, 49(4): 71. [百度学术]
DENG Tao, LIAO Jun, WANG Chenbin, et al. A study of shear strength characteristics and estimation model of limestone under different weathering degrees [J]. Hydrogeology & Engineering Geology, 2022, 49(4): 71. [百度学术]
廖健, 赵延林, 刘强, 等. 酸化学腐蚀下灰岩剪切强度特性试验研究[J]. 采矿与安全工程学报, 2020, 37(3): 639. [百度学术]
LIAO Jian, ZHAO Yanlin, LIU Qiang, et al. Experimental study on shear strength characteristics of limestone under acidizing corrosion [J]. Journal of Mining & Safety Engineering, 2020, 37(3): 639. [百度学术]
CHALA E T, RAO K S. Influence of weathering on the engineering behaviour of rocks under triaxial confining conditions[C]// Geotechnical Frontiers 2017. New York: ASCE, 2017: 570-578. [百度学术]
韩铁林, 陈蕴生, 师俊平, 等. 水化学腐蚀对砂岩力学特性影响的试验研究[J]. 岩石力学与工程学报, 2013, 32(S2): 3064. [百度学术]
HAN Tielin, CHEN Yunsheng, SHI Junping, et al. Experimental study of mechanical characteristics of sandstone subjected to hydrochemical erosion [J]. Chinese Journal of Rock Mechanics and Engineering, 2013,32(S2):3064. [百度学术]
郑哲远, 李兆霞. 剪切型Beam Lattice模型及其在岩石翼裂纹扩展和贯通模拟中的应用[J]. 东南大学学报(自然科学版), 2017, 47(2): 350. [百度学术]
ZHENG Zheyuan, LI Zhaoxia. Shear-enhanced Beam Lattice model and its application in simulation of propagation and coalescence of wing crack in geomaterials [J]. Journal of Southeast University (Natural Science Edition), 2017,47(2):350. [百度学术]
CHANG C S, WANG T K, SLUYS L J, et al. Fracture modeling using a micro-structural mechanics approach Ⅰ: theory and formulation [J]. Engineering Fracture Mechanics, 2002, 69(17): 1941. [百度学术]
ZHOU Z H , WANG H N , JIANG M J. Elastic constants obtained analytically from microscopic features for regularly arranged elliptical particle assembly[J]. Granular Matter, 2021, 23(2): 1. [百度学术]
ZHOU Z H, WANG H N, JIANG M J. Strength criteria at anisotropic principal directions expressed in closed form by interparticle parameters for elliptical particle assembly[J]. Granular Matter, 2023, 25(1): 1. [百度学术]
JIANG M J, ZHANG N, CUI L, et al. A size-dependent bond failure criterion for cemented granules based on experimental studies [J]. Computers and Geotechnics, 2015, 69: 182. [百度学术]
CHOU P C, CARLEONE J, HSU C M, Elastic constants of layered media [J]. Journal of Composite Materials, 1972, 6(1): 80. [百度学术]
DIGBY P J. The effective elastic moduli of porous granular rocks [J]. Journal of Applied Mechanics, 1981, 48(4): 803. [百度学术]
刘泉声, 胡云华, 刘滨. 基于试验的花岗岩渐进破坏本构模型研究[J]. 岩土力学, 2009, 30(2): 289. [百度学术]
LIU Quansheng, HU Yunhua, LIU Bin. Progressive damage constitutive models of granite based on experimental results [J]. Rock and Soil Mechanics, 2009, 30(2): 289. [百度学术]
李宁, 朱运明, 张平, 等. 酸性环境中钙质胶结砂岩的化学损伤模型[J]. 岩土工程学报, 2003, 25(4): 395. [百度学术]
LI Ning, ZHU Yunming, ZHANG Ping, et al. A chemical damage model of sandstone in acid environment [J]. Chinese Journal of Geotechnical Engineering, 2003, 25(4): 395. [百度学术]
ARIKAN F, AYDIN N. Influence of weathering on the engineering properties of dacites in Northeastern Turkey [J]. International Scholarly Research Notices, 2012, 2012: 218527. [百度学术]
凌斯祥, 巫锡勇, 孙春卫, 等. 水岩化学作用对黑色页岩的化学损伤及力学劣化试验研究[J].实验力学,2016,31(4): 511. [百度学术]
LING Sixiang, WU Xiyong, SUN Chunwei, et al. Experimental study on chemical damage and mechanical degradation of black shale caused by water-induced chemical interaction [J]. Journal of Experimental Mechanics. 2016, 31(4): 511. [百度学术]