摘要
简述了冲流带水沙运动的基本特征,综述了入渗或出渗、段波紊动、泥沙平流、沉降或冲刷延后以及沿岸流、波浪‒冲流相互作用和波群作用对冲流带水沙运动影响的最新研究进展;介绍了冲流带水沙运动物理实验的实现方式以及物理实验中冲流带泥沙运动观测技术的最新进展,论述了用于冲流带水沙运动研究的2类数学模型,并讨论了各自的优缺点。最后,探讨了现有研究成果和研究方法的局限性,并给出了未来的研究展望。
冲流带指海域和陆域之间的波浪爬高区,是沙质海岸带中泥沙运动最剧烈的区域之
冲流过程(即冲流带水体的上冲和回流过程)水体含沙量高、紊动剧烈,水深小且变化快,给其观测带来了很大困难,使冲流带水沙动力过程成为海岸水沙动力领域的难题之
冲流带水流为强非恒定流,水体紊动剧烈,瞬时输沙和岸滩演变强度大,冲流带是沙质海岸泥沙运动最剧烈的区域之一。冲流过程可以分为上冲和回流过程,在这2个过程中悬移质和推移质/层移质均发挥了重要作用。冲流过程的直接驱动力为破碎波(短波)和次重力波(长波),在反射型海滩更多地由破碎波控制,而在耗散型海滩则更多地由次重力波控制。冲流带输沙在沙质海岸的向岸‒离岸输沙和沿岸输沙中均有重要占
精细的实验测量表明,对于单独的冲流过程,悬移质和层移质输沙主要发生在上冲过程的初期和回流过程的中后

图1 冲流过程中水沙运动示意图(根据文献[
Fig.1 Schematic diagram of hydrodynamic and sediment transport processes in a single swash event(Revised according to reference [
除了1节中提到的对速度离岸偏斜具有补偿效应的入渗或出渗、段波紊动、泥沙平流和沉降或冲刷延后等之外,冲流带水沙运动还受沿岸
入渗或出渗过程会影响冲流过程的水流爬高距离(影响可达1 m以上)、爬高水体体积(影响可达33%)及流体动量(可使回流过程流速降低0.6 m·
段波指位于内破波带的波浪由于剧烈非线性而表现出的峰前陡峭峰后平缓的形态,常伴随着水体紊动。冲流带的一种定义方式为段波的崩破点至波浪爬高最高点之间的滩面,因此段波传播过程中及其崩破时强烈紊动对破波带和冲流带之间的泥沙平流有强烈的促进作用,通常会促使大量破波带的泥沙向冲流带输移,对冲流带流速离岸偏斜引起的离岸输沙起到补偿作
冲流带的泥沙平流指泥沙在冲流带内或冲流带与内破波带之间(以悬移质或层移质形式)的远距离搬运。人们最早关注的泥沙平流现象是由段波紊动引起的内破波带到冲流带的泥沙平流。事实上,泥沙平流并不特指内破波带与冲流带之间的泥沙平流,也指冲流带内部的泥沙远距离搬运。泥沙平流的概念用在冲流带主要是为了区别于传统认知中沙质床沙的输移以推移质为主(且受底部切应力控制),其重要表现之一为冲流带中具体位置的输沙率并不一定与该处的动力条件(流速、切应力等)直接相关,还可能受毗邻区域的泥沙通量控
沉降或冲刷延后的概念均与泥沙平流相关。沉降延后指水流流速变慢后,泥沙从泥沙平流中减速到落淤之间的时间
本文不讨论冲流带输沙对沿岸输沙的贡献,但冲流过程和沿岸流的作用是相互的。一方面,冲流带输沙是沿岸输沙的重要组成;另一方面,即使不考虑冲流带的沿岸效应而只考虑其引起的向岸‒离岸输沙,很多案例中沿岸流的作用也不能忽视。虽然沿岸流不直接产生向岸‒离岸输沙效应,但是有些时候沿岸流速很快,会产生额外的水流切应力,导致泥沙起动,增强了向岸‒离岸输
波浪‒冲流相互作用也称冲流‒冲流相互作用,指尚未结束的冲流过程与下一个入射波浪(段波)之间的相互作用。波浪‒冲流相互作用可分为波浪捕获和波浪‒回流相互作用,分别指新的入射波浪与冲流带上冲过程和回流过程的相互作用,后者又可根据回流是否强于入射波浪分为强、弱波浪‒回流相互作
单个波浪冲流过程引起的纵向泥沙分布与振荡片流类
与冲流带水沙运动相关的物理实验研究可在波浪水槽、冲流水槽或振荡水槽中进行,冲流带水沙运动的观测是传统难题。近年来,随着电导率探头和高速相机测速技术的发展,冲流带输沙观测能力得到显著提升。
在实验装置上,冲流带水沙运动相关的物理实验大致可以分为3种,即波浪水槽实验、冲流水槽实验和振荡水槽实验。波浪水槽实验在传统的波浪水槽中进行,冲流过程通过推波板造波引起的波浪爬高实现,研究的波浪过程通常包括孤立
冲流带泥沙运动的测量一直是制约冲流带水沙动力研究的难题。冲流带输沙以悬移质和层移质形式为主。悬移质的测量较为简单,通过率定得当的光学浊度仪(OBS)可以测量水体悬沙浓度,OBS测量可能会受气泡的影响,但总体上有较好的测量效
近年来,电导率探头的应用很大程度上解决了冲流带近底泥沙输运的观测问题。电导率探头通过水体电导率反推含沙量,可以将其埋置于海滩中并使探头出露滩面,从而采集近底层移质含沙量。事实上,早在20世纪80年代,电导率探头已经用于片流研究
随着高速相机测量技术和粒子图像测速技术(PIV)的发展,图像测量技术在冲流带水沙测量方面也发挥了重要作用,解决了近底高含沙水体的流速测量难题。近年来,多项研究均采用图像处理技术获得了详细的近底输沙速度和流速分
冲流带水沙动力数学模型可以分为2类,即波浪平均类和相位解析类。前者基于波浪平均的净输沙公式计算冲流带中长时间尺度的岸滩演变,后者通过相位解析的数学模型复演冲流带的波浪上冲、回流过程及泥沙运动。
冲流带的波浪平均类数学模型是基于波浪平均的净输沙率来计算多个冲流过程引起的岸滩演变,可用于中长时间尺度岸滩演变的数值模拟。该类模型的理论基础为特征流速和净输沙率之间的关系(净输沙率公式),该关系可以根据希尔兹数或Bagnol
冲流带的相位解析类数学模型通过求解各类纳维‒斯托克斯(N‒S)方程来复演冲流过程,通常用于研究一个至数个冲流过程的水沙动力特征,近年来该类模型发展迅速。在水动力方面,主流的流体力学求解方法均在冲流过程模拟中得到了应用,如雷诺平均N‒S方
本文综述冲流带水沙运动的研究进展,主要聚焦于冲流带的向岸‒离岸输沙,包括冲流带水沙运动的基本特征、影响因素、物理实验研究方法和数值模拟研究方法。冲流带水流为强非恒定流,紊动剧烈,瞬时输沙强度大,受到入渗或出渗、段波紊动、泥沙平流、沉降或冲刷延后以及沿岸流、波浪‒冲流相互作用和波群作用等一系列因素的影响,而这些因素也会彼此相互作用,从而进一步加大了冲流带水沙运动的复杂性。冲流带水沙运动相关的物理实验研究可在波浪水槽、冲流水槽或振荡水槽中进行。冲流带水沙运动的观测是传统难题,但近年来随着电导率探头和高速相机测速技术的发展,对冲流带输沙(尤其是层移质输沙)的观测能力得到显著提升。冲流带水沙动力数学模型可以分为2类,即波浪平均类和相位解析类。前者基于波浪平均的净输沙公式来计算冲流带中长时间尺度的岸滩演变,后者通过相位解析的数学模型复演冲流带的波浪上冲、回流过程及泥沙运动,两者有各自的适用范围和优缺点。
冲流带水沙运动是沙质海岸水沙运动最剧烈的区域之一,也是目前沙质海岸泥沙研究的最薄弱环节,这主要受限于传统研究中对其复杂水沙运动观测手段的匮乏。近年来随着电导率探头等观测技术的发展,对冲流带的研究取得了显著进展,但仍存在许多需要解决的科学和技术问题。建立冲流带‒破波带演变统一模型,回答人工养滩后冲流带和破波带的泥沙交换机制,能够进一步为沙质海岸软防护提供重要的理论基础和研究工具。
作者贡献声明
潘 毅:选题提出,论文框架设计,论文写作与修改。
陈自怡:资料查阅,图表绘制,论文写作。
刘 烨:资料查阅,论文写作。
朱芳芳:学术指导,论文写作与修改。
匡翠萍:论文框架设计,论文修改。
参考文献
MASSELINK G, PULEO J A. Swash-zone morphodynamics [J]. Continental Shelf Research, 2006, 26(5): 661. [百度学术]
CHARDÓN-MALDONADO P, PINTADO-PATIÑO J C, PULEO J A. Advances in swash-zone research: small-scale hydrodynamic and sediment transport processes [J]. Coastal Engineering, 2016, 115: 8. [百度学术]
JACKSON N L, NORDSTROM K F, FARRELL E J. Longshore sediment transport and foreshore change in the swash zone of an estuarine beach [J]. Marine Geology, 2017, 386: 88. [百度学术]
NORDSTROM K F, JACKSON N L, ALLEN J R, et al. Longshore sediment transport rates on a microtidal estuarine beach [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2003, 129: 1. [百度学术]
TEMMERMAN S, MEIRE P, BOUMA T, et al. Ecosystem-based coastal defence in the face of global change [J]. Nature, 2013, 504: 79. [百度学术]
PAN Y, YIN S, CHEN Y P, et al. An experimental study on the evolution of a submerged berm under the effects of regular waves in low-energy conditions[J]. Coastal Engineering, 2022, 176: 104169. [百度学术]
匡翠萍, 潘毅, 张宇, 等. 北戴河中直六、九浴场养滩工程效果分析与预测[J]. 同济大学学报(自然科学版), 2010, 38(4): 509. [百度学术]
KUANG Cuiping, PAN Yi, ZHANG Yu, et al. Performance analysis and prediction of beach nourishment project in Zhongzhi 6th and 9th bathing places in Beidaihe[J]. Journal of Tongji University (Natural Science), 2010, 38(4): 509. [百度学术]
VAN DER ZANDEN J, ALSINA J M, CÁCERES I, et al. Bed level motions and sheet flow processes in the swash zone: observations with a new conductivity-based concentration measuring technique (CCM)+ [J]. Coastal Engineering, 2015, 105: 47 [百度学术]
PINTADO-PATIÑO J C, PULEO J A, KRAFFT D, et al. Hydrodynamics and sediment transport under a dam-break-driven swash: an experimental study[J]. Coastal Engineering, 2021, 170: 103986. [百度学术]
VAN DER ZANDEN J, CÁCERES I, EICHENTOPF S, et al. Sand transport processes and bed level changes induced by two alternating laboratory swash events[J]. Coastal Engineering, 2019, 152: 103519. [百度学术]
MASSELINK G, HUGHES M. Field investigation of sediment transport in the swash zone[J]. Continental Shelf Research, 1998, 18(10): 1179. [百度学术]
BLENKINSOPP C E, TURNER I L, MASSELINK G, et al. Swash zone sediment fluxes: field observations[J]. Coastal Engineering, 2011, 58(1): 28. [百度学术]
BAGNOLD R A. The Sea [M]. New York: Wiley-Interscience, 1963. [百度学术]
PINTADO-PATIÑO J C, TORRES-FREYERMUTH A, PULEO J A, et al. On the role of infiltration and exfiltration in swash zone boundary layer dynamics[J]. Journal of Geophysical Research: Oceans, 2015, 120(9): 6329. [百度学术]
曹志刚, 王逸伦, 国振, 等. 考虑渗流效应的冲流带泥沙起动机理研究[J]. 水科学进展, 2019, 30(4): 114. [百度学术]
CAO Zhigang, WANG Yilun, GUO Zhen, et al. Study on the sediment initiation considering the seepage in the swash zone[J]. Advances in Water Science, 2019, 30(4): 114. [百度学术]
HSU T J, RAUBENHEIMER B. A numerical and field study on inner-surf and swash sediment transport[J]. Continental Shelf Research, 2006, 26(5): 589. [百度学术]
ALSINA J M, FALCHETTI S, BALDOCK T E. Measurements and modelling of the advection of suspended sediment in the swash zone by solitary waves[J]. Coastal Engineering, 2009, 56(5/6): 621. [百度学术]
MASSELINK G, EVANS D, HUGHES M G, et al. Suspended sediment transport in the swash zone of a dissipative beach[J]. Marine Geology, 2005, 216(3): 169. [百度学术]
PULEO J A, CRISTAUDO D, TORRES-FREYERMUTH A, et al. The role of alongshore flows on inner surf and swash zone hydrodynamics on a dissipative beach[J]. Continental Shelf Research, 2020, 201: 104134. [百度学术]
ALSINA J M, VAN DER ZANDEN J, CACERES I, et al. The influence of wave groups and wave-swash interactions on sediment transport and bed evolution in the swash zone[J]. Coastal Engineering, 2018, 140: 23. [百度学术]
BALDOCK T E, ALSINA J A, CACERES I, et al. Large-scale experiments on beach profile evolution and surf and swash zone sediment transport induced by long waves, wave groups and random waves[J]. Coastal Engineering, 2011, 58(2): 214. [百度学术]
李志强, 陈子燊. 海滩冲流带高频振动及碎波带波浪作用的模态分析[J]. 海洋学报, 2008(2): 161. [百度学术]
LI Zhiqiang, CHEN Zishen. Analyses of modes existing in the high frequency fluctuations of beachface and wave actions in the surf zone[J]. Acta Oceanologica Sinica, 2008(2): 161. [百度学术]
CONLEY D C, GRIFFIN J G. Direct measurements of bed stress under swash in the field [J]. Journal of Geophysical Research: Oceans, 2004, 109: C03050. [百度学术]
CONLEY D C, INMAN D L. Ventilated oscillatory boundary layers [J]. Journal of Fluid Mechanics, 1994, 273: 261. [百度学术]
PERERA E, ZHU F, DODD N, et al. Surface-groundwater flow numerical model for barrier beach with exfiltration incorporated bottom boundary layer model[J]. Coastal Engineering, 2019, 146: 47. [百度学术]
TURNER I L, MASSELINK G. Swash infiltration-exfiltration and sediment transport[J]. Journal of Geophysical Research: Oceans, 1998, 103: 30813. [百度学术]
BALDOCK T E, NIELSEN P. Discussion of “effect of seepage-induced nonhydrostatic pressure distribution on bed-load transport and bed morphodynamics” by Simona Francalanci, Gary Parker, and Luca Solari [J]. Journal of Hydraulic Engineering, 2010, 136(1): 77. [百度学术]
CHEN W, VAN DER WERF J J, HULSCHER S J M H. A review of practical models of sand transport in the swash zone [J]. Earth-Science Reviews, 2023, 238: 104355. [百度学术]
MASSELINK G, LI L. The role of swash infiltration in determining the beachface gradient: a numerical study[J]. Marine Geology, 2001, 176(1/4): 139. [百度学术]
BUTT T, RUSSELL P, TURNER I. The influence of swash infiltration-exfiltration on beach face sediment transport: onshore or offshore?[J]. Coastal Engineering, 2001, 42(1): 35. [百度学术]
BUTT T, RUSSELL P, PULEO J, et al. The influence of bore turbulence on sediment transport in the swash and inner surf zones[J]. Continental Shelf Research, 2004, 24(7/8): 757. [百度学术]
JACKSON N L, MASSELINK G, NORDSTROM K F. The role of bore collapse and local shear stresses on the spatial distribution of sediment load in the uprush of an intermediate-state beach[J]. Marine Geology, 2004, 203(1/2): 109. [百度学术]
PRITCHARD D, HOGG A J. On the transport of suspended sediment by a swash event on a plane beach[J]. Coastal Engineering, 2005, 52(1): 1. [百度学术]
KOBAYASHI N, JOHNSON B D. Sand suspension, storage, advection, and settling in surf and swash zones[J]. Journal of Geophysical Research: Oceans, 2001, 106: 9363. [百度学术]
ZHU F, DODD N. Swash zone morphodynamic modelling including sediment entrained by bore-generated turbulence[J]. Advances in Water Resources, 2020, 146: 103756. [百度学术]
PULEO J A, LANCKRIET T, CONLEY D, et al. Sediment transport partitioning in the swash zone of a large-scale laboratory beach[J]. Coastal Engineering, 2016, 113: 73. [百度学术]
PRITCHARD D. Sediment transport under a swash event: the effect of boundary conditions[J]. Coastal Engineering, 2009, 56(9): 970. [百度学术]
AUSTIN M J, MASSELINK G, RUSSELL P E, et al. Alongshore fluid motions in the swash zone of a sandy and gravel beach[J]. Coastal Engineering, 2011, 58(8): 690. [百度学术]
CÁCERES I, ALSINA J M. A detailed, event-by-event analysis of suspended sediment concentration in the swash zone[J]. Continental Shelf Research, 2012, 41: 61. [百度学术]
ALSINA J M, CÁCERES I, BROCCHINI M, et al. An experimental study on sediment transport and bed evolution under different swash zone morphological conditions [J]. Coastal Engineering, 2012, 68: 31. [百度学术]
CHEN B T, KIKKERT G A, POKRAJAC D, et al. Experimental study of bore-driven swash: swash interactions on an impermeable rough slope[J]. Coastal Engineering, 2016, 108: 10. [百度学术]
PUJARA N, LIU P L F, YEH H. The swash of solitary waves on a plane beach: flow evolution, bed shear stress and run-up[J]. Journal of Fluid Mechanics, 2015, 779: 556. [百度学术]
PUJARA N, LIU P L F, YEH H. An experimental study of the interaction of two successive solitary waves in the swash: a strongly interacting case and a weakly interacting case[J]. Coastal Engineering, 2015, 105: 66. [百度学术]
PULEO J A, KRAFFT D, PINTADO-PATIÑO J C, et al. Video-derived near bed and sheet flow sediment particle velocities in dam-break-driven swash[J]. Coastal Engineering, 2017, 126: 27. [百度学术]
DAI H J, KIKKERT G A, CHEN B T, et al. Entrained air in bore-driven swash on an impermeable rough slope[J]. Coastal Engineering, 2017, 121: 26. [百度学术]
O'DONOGHUE T, WRIGHT S. Concentrations in oscillatory sheet flow for well sorted and graded sands[J]. Coastal Engineering, 2004, 50(3): 117. [百度学术]
VAN DER A D A, O’DONOGHUE T, RIBBERINK J S. Measurements of sheet flow transport in acceleration-skewed oscillatory flow and comparison with practical formulations[J]. Coastal Engineering, 2010, 57(3): 331. [百度学术]
O’DONOGHUE T, POKRAJAC D, HONDEBRINK L J. Laboratory and numerical study of dambreak-generated swash on impermeable slopes[J]. Coastal Engineering, 2010, 57(5): 513. [百度学术]
O’DONOGHUE T, KIKKERT G A, POKRAJAC D, et al. Intra-swash hydrodynamics and sediment flux for dambreak swash on coarse-grained beaches[J]. Coastal Engineering, 2016, 112: 113. [百度学术]
HORIKAWA K, WATANABE A, KATORI S. Sediment transport under sheet flow condition[C]// Proceedings of the 18th International Conference on Coastal Engineering. Cape Town: ASCE, 1982: 1335-1352. [百度学术]
ALSINA J M, PADILLA E M, CÁCERES I. Sediment transport and beach profile evolution induced by bi-chromatic wave groups with different group periods[J]. Coastal Engineering, 2016, 114: 325. [百度学术]
潘毅, 潘鹏, 刘烨, 等. 基于高速相机测速的冲流带回流过程输沙研究[J]. 水动力学研究与进展:A辑, 2023, 38(1): 75. [百度学术]
PAN Yi, PAN Peng, LIU Ye, et al. Study on sediment transport in backwash phase of swash processes with high-speed camera velocimetry [J]. Chinese Journal of Hydrodynamics, 2023, 38(1): 75. [百度学术]
COWEN E A, MEI SOU I, LIU P L F, et al. Particle image velocimetry measurements within a laboratory-generated swash zone[J]. Journal of Engineering Mechanics, 2003, 129(10): 1119. [百度学术]
KIKKERT G A, POKRAJAC D, O’DONOGHUE T, et al. Experimental study of bore-driven swash hydrodynamics on permeable rough slopes[J]. Coastal Engineering, 2013, 79: 42. [百度学术]
WU L, FENG D, SHIMOZONO T, et al. Laboratory measurements of sediment flux and bed level evolution in the swash zone[J]. Coastal Engineering Journal, 2016, 58(2): 1650004. [百度学术]
BAKHTYAR R, BARRY D A, LI L, et al. Modeling sediment transport in the swash zone: a review[J]. Ocean Engineering, 2009, 36(9/10): 767. [百度学术]
LARSON M, KUBOTA S, ERIKSON L. Swash-zone sediment transport and foreshore evolution: field experiments and mathematical modeling[J]. Marine Geology, 2004, 212(1/4): 61. [百度学术]
NIELSEN P. Shear stress and sediment transport calculations for swash zone modelling[J]. Coastal Engineering, 2002, 45(1): 53. [百度学术]
VAN RIJN L C, TONNON P K, WALSTRA D J R. Numerical modelling of erosion and accretion of plane sloping beaches at different scales[J]. Coastal Engineering, 2011, 58(7): 637. [百度学术]
BALDOCK T E, TORRES-FREYERMUTH A. Numerical study of the flow structure at a swash tip propagating over a rough bed[J]. Coastal Engineering, 2020, 161: 103729. [百度学术]
HU P, XIE J, LI W, et al. A RANS numerical study of experimental swash flows and its bed shear stress estimation[J]. Applied Ocean Research, 2020, 100: 102145. [百度学术]
BRIGANTI R, DODD N, INCELLI G, et al. Numerical modelling of the flow and bed evolution of a single bore-driven swash event on a coarse sand beach[J]. Coastal Engineering, 2018, 142: 62. [百度学术]
ZHU F, DODD N, BRIGANTI R, et al. A logarithmic bottom boundary layer model for the unsteady and non-uniform swash flow[J]. Coastal Engineering, 2022, 172: 104048. [百度学术]
邓斌, 蒋昌波, 杨树清, 等. 冲泻区形态动力学耦合模型研究Ⅰ: 分段输沙率公式建立[J]. 水利学报, 2018, 49(11): 1409. [百度学术]
DENG Bin, JIANG Changbo, YANG Shuqing, et al. Coupled swash zone hydrodynamics and beach morphodynamics modeling Ⅰ: segmented sediment transportation model [J]. Journal of Hydraulic Engineering, 2018, 49(11): 1409. [百度学术]
邓斌, 蒋昌波, 陈杰, 等. 冲泻区形态动力学耦合模型研究Ⅱ: 模型建立与验证[J]. 水利学报, 2018, 49(12): 1512. [百度学术]
DENG Bin, JIANG Changbo, CHEN Jie, et al. Coupled swash zone hydrodynamics and beach morphodynamics modeling Ⅱ: model establishment & validation [J]. Journal of Hydraulic Engineering, 2018, 49(12): 1512. [百度学术]
HARADA E, IKARI H, KHAYYER A, et al. Numerical simulation for swash morphodynamics by DEM-MPS coupling model[J]. Coastal Engineering Journal, 2019, 61(1): 2. [百度学术]
BROCCHINI M, DODD N. Nonlinear shallow water equation modeling for coastal engineering[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2008, 134(2): 104. [百度学术]
ZHU F, DODD N. The morphodynamics of a swash event on an erodible beach[J]. Journal of Fluid Mechanics, 2015, 762: 110. [百度学术]
SOULSBY R. Dynamics of marine sands [M]. London: Thomas Telford, 1997. [百度学术]
TAZAKI T, HARADA E, GOTOH H. Vertical sorting process in oscillating water tank using DEM-MPS coupling model[J]. Coastal Engineering, 2021, 165: 103765. [百度学术]
HU P, TAN L, HE Z. Numerical investigation on the adaptation of dam-break flow-induced bed load transport to the capacity regime over a sloping bed[J]. Journal of Coastal Research, 2020, 36(6): 1237. [百度学术]
ZENG J, LIU H. Frictional swash hydrodynamics under the improved seaward boundary condition[J]. Coastal Engineering, 2021, 169: 103969. [百度学术]