摘要
好氧堆肥是处理有机垃圾的常用手段,但在堆肥过程中存在高温、高pH值以及局部厌氧等情况,导致含氮物质以NH3、N2O、N2等形式逸出体系,从而降低了堆肥产品品质并污染了环境。通过改善堆体环境、提高微生物活性、调控堆体氮循环反应,生物炭、磷镁添加剂、微生物菌剂等外源物质显著降低了堆肥氮损失。介绍了好氧堆肥氮循环的基本机理,综述了近年来物理、化学、生物3类添加剂在控制好氧堆肥氮损失方面的研究成果,总结了外源添加剂对堆肥氮素转化代谢过程的影响机制,最后展望了氮循环路径以及添加剂与基质相互作用方面的研究潜力。
好氧堆肥是一种利用微生物将有机废物转化成腐熟肥料的技术,能够在处理废弃物的同时实现资源
研究者通过优化初始C/N、曝气量、堆肥原料配比等工艺参数调控堆肥进程,提高了空气扩散效率,促进了微生物的生命活动,在氮素固持、温室气体减排等方面均取得了一定效果。然而,优化堆肥条件以减少氮损失的边际贡献递减明显,且一般成本较高,难以维持。外源材料能够从含氮物质转化和气体吸附捕获等多维度将氮素稳定化,物理、化学、微生物添加剂可分别减少堆肥过程中38.5%、51.3%、33%NH3损失,展现出良好的保氮效果和潜
堆肥中的氮素主要包括有机氮组分和无机氮组分。无机氮是指铵态氮、硝态氮和亚硝态氮等未与碳结和的含氮物质,有机氮是指同时含有碳素和氮素的大分子有机物,如蛋白质和生物碱等。堆肥过程中的氨化作用、硝化作用和反硝化作用等生化反应共同推动了氮素的转化和循环。堆肥初期,含氮有机物水解为氨基酸等小分子物质,发生氨化作用并形成NH。一部分NH转化成NH3逸出体系,NH3释放量随温度和pH值升高呈上升趋

图1 好氧堆肥氮素转化示意图
Fig.1 Schematic diagram of nitrogen conversion in aerobic composting
堆肥初期,大量的有机物在蛋白酶、脲酶等活性物质催化下水解为氨基酸、多肽、氨基糖等,这些小分子含氮物质作为氨化底物进一步在微生物酶的作用下脱去氨基,从而生成NH,即氨化作
氨化作用产生的氨一部分被堆体中的微生物同化合成自身所需生命物质,另一部分在氨氧化细菌作用下转化为硝酸盐。硝化作用可分为2个步骤,NH在氨氧化细菌或古细菌(AOB/AOA)作用下发生氧化而生成NO,这一步被认为是整个硝化作用的限速步
(1) |
(2) |
(3) |
反硝化作用涉及的生化反应过程包括硝酸盐转化为亚硝酸盐、亚硝酸盐转化为一氧化氮、一氧化氮转化为N2O或N2等多个反应过程,具体氧化还原反应式如下所
(4) |
(5) |
(6) |
(7) |
氨化、硝化、反硝化是影响氮损失的主要路径,也是外源物质调控氮转化的关键。物理添加剂能够为反应提供活性位点,增强电子转移;化学添加剂能够调整pH值,有利于NH保存,磷镁添加剂还能直接与NH反应,形成鸟粪石结晶,使NH以更加稳定的MgNH4PO4•6H2O形式存在。
DNRA是硝酸盐还原的另一种形式,广泛存在于河口、土壤等各个生态系统中,与反硝化作用不同,DNRA反应的最终产物是NH。目前对于DNRA反应的研究多集中在污水脱氮领域,在堆肥方向还需进一步研究。具体氧化还原反应式
(8) |
(9) |
厌氧氨氧化细菌以铵根离子为电子供体、亚硝酸根离子为电子受体发生氧化还原反应,释放N2,造成堆肥过程中的氮损失。具体氧化还原反应式如下所
(10) |
(11) |
(12) |
(13) |
氮循环相关生化反应是由微生物分泌的各种酶催化的,生化过程的效率与微生物活性和酶活性密切相
反应类型 | 发生阶段 | 主要微生物 | 酶 | 参考文献 |
---|---|---|---|---|
氨化作用 | 中温阶段 | 假单胞菌、乳酸菌 |
[ | |
硝化作用 | 中温阶段 | 短单胞菌、假单胞菌和奇古菌 |
氨单加氧酶(AMO)、羟胺氧化还原酶(HAO)、亚硝酸盐氧化 还原酶 (NXR) |
[ |
腐熟阶段 | ||||
反硝化作用 | 中温阶段 | 假单胞菌和芽孢杆菌 |
硝酸盐还原酶、亚硝酸盐还原酶、一氧化氮还原酶、一氧化二氮 还原酶 |
[ |
高温阶段 | ||||
厌氧氨氧化 | 厌氧氨氧化菌 | 肼氧化酶、肼合酶(HZS) |
[ | |
DNRA |
周质硝酸盐还原酶(NAP)、周质亚硝酸盐还原酶(NRFA)、 一氧化氮还原酶(NOR) |
[ |
堆肥初期,堆体有机物含量丰富,假单胞菌属和乳酸菌属等氨化细菌生命活动旺盛,有机物在水解酶的作用下剧烈分解,产生的小分子物质作为底物发生氨化反应,释放大量热量,堆体温度逐渐上升。同时,堆体中携带nasA、narB、narG、narH、narI及nirA、nirB、nirD基因的反硝化菌,将NO还原成NO,并在亚硝酸盐还原酶和一氧化氮还原酶的催化下将NO转化为N2O,造成堆肥初期的氮素损失。进入高温期后,大量嗜温微生物死亡或进入休眠状态,大部分病原微生物灭活,堆体中以嗜热菌为主,前期氨化作用产生的一部分NH在高温和碱性条件下转化为NH3逸出体系。随着有机物减少,矿化作用减弱,温度降低。进入降温期后,nasA、narB、napA、napB基因增加,促进NO向NO转化,同时携带nirK和norB、norC基因的嗜油脂极小单胞菌、类固醇杆菌和德沃斯氏菌等反硝化菌富集,促进N2O排放。反硝化作用往往发生在体系中氧气不足的区域,研究者通过加入生物炭等多孔物质,改善堆体通气条件,降低反硝化反应强度。在腐熟阶段,硝化细菌大量繁殖,短单胞菌、假单胞菌和奇古菌等逐渐成为优势种,在氨单加氧酶(AMO)、亚硝酸盐氧化还原酶(NXR)驱动下将铵态氮转化为硝态
根据作用类型不同,外源物质可分为物理、化学、生物添加剂,通过直接参与氮转化相关反应或强化相关反应微生物活性影响堆体氮循环过程,达到保氮效果。
物理添加剂能够通过物质吸附、改善堆体通风供氧条件等方式影响氮循环,减少好氧堆肥过程中的氮素损失(见
添加剂种类 | 堆体基质 | 添加量(干重) | 保氮效果 | 参考文献 |
---|---|---|---|---|
生物炭 | 猪粪 | 0%、5%、10%、15% | 氨挥发累积排放量分别比对照组降低了18.77%、25.35%和26.39% |
[ |
啤酒酒糟 | 0、5%、10%、15% | 添加5%和10%生物炭的组别最终氮损失仅略有减少,添加15%生物炭的最终氮损失从60.76%显著减少到44.32% |
[ | |
沼渣生物炭 |
猪粪+枸杞 枝屑 | 0%、2.5%、5.0%、7.5% | 以NH3和N2O形式减少的氮分别从总氮的10.78%减少到<5.73%和从0.34%减少到<0.04% |
[ |
草炭、沸石 | 鸡粪+锯末 | 以C/N 25左右、含水率65%左右为标准进行配比 | 单加沸石总氮损失相比于对照组减少19.4%,单加草炭减少59.7% |
[ |
铁碳颗粒 | 厨余垃圾 | 10% | NO含量增加了15.9% |
[ |
沸石 |
污水污泥+ 麦秸 | 0%、5%、10%、15% | 氮损失分别减少了41.12%、43.17%、50.43% |
[ |
物理添加剂能有效减少好氧堆肥过程中的氮流失,通过优化堆体环境、调整含水率和C/N、提供反应位点发挥保氮作用,保氮效果受添加剂量的影响。
化学添加剂包括有机添加剂和无机添加剂,主要通过调整堆体pH值或直接与含氮物质反应从而达到固氮目的(见
添加剂种类 | 堆体基质 | 添加量(干重)/% | 保氮效果(%,相比于对照组) | 参考文献 | |||
---|---|---|---|---|---|---|---|
NH3 | N2O | TN | 氮损失率 | ||||
过磷酸钙 | 牛粪 | 10 | 19.65 | 20.80 |
[ | ||
氨三乙酸 | 剩余污泥 | 2.5 | 15.20 |
[ | |||
聚天冬氨酸 | 鸡粪 | 0.024 | 16 |
[ | |||
磷石膏 | 餐厨垃圾 | 10 | 23.50 | 3.20 |
[ | ||
三磷酸腺苷 | 园林废弃物 | 0.1 | 27.99 |
[ | |||
丙二酸 | 园林废弃物 | 0.5 | 29.10 |
[ | |||
FeSO4 | 牛粪 | 2.5~5.0 | 9.20~15.70 |
[ | |||
MgCl2 | 污水污泥 | 5 | 58.30 |
[ | |||
FeSO4 | 污水污泥 | 5 | 82.90 |
[ | |||
磷酸钙镁 | 猪粪 | 10 | 42.90 |
[ | |||
磷石膏 | 猪粪 | 59.74 | 8.15 |
[ |
与物理添加剂作用方式不同,化学添加剂往往直接参与堆肥中的物质转化,对堆体pH值影响较大,研究结果表明化学添加剂平均将堆体pH值降低0.
微生物添加剂可以由单一菌种构成,也可以由数种不同微生物组成复合菌剂。目前常用于堆肥添加的微生物类群包括芽孢杆菌属(Bacillus)、乳酸杆菌属(Lactobacillus)、假单胞菌属(Pseudomonas)、链霉菌属(Streptomyces)、曲霉属(Aspergillus)、木霉属(Trichoderma)以及白腐菌(White-Rot Fungi)
在猪粪堆肥中加入地衣芽孢杆菌、黄孢原毛平革菌配比为1∶8的微生物复合菌剂,不仅使总氮和有机氮损失分别减少了17.3%和18.5%,还促进了Cu等重金属钝化过
生物添加剂改善了堆体内部群落结构,通过影响氮循环相关基因的表达调整反应强度,一些菌剂在发挥固氮效果的同时还可以加快堆肥进程、促进抗生素等有害物质降
目前,针对多种添加剂联合施加调控堆肥过程的研究已取得了丰富成果,不同类型添加剂耦合强化好氧堆肥成效明显,保氮效果受各类型添加剂配比的影响(见
添加剂种类及用量(干重) | 堆体基质 | 保氮效果/% | 参考文献 | |||
---|---|---|---|---|---|---|
NO-N | NH-N | NH3 | N2O | |||
生物炭5%+乳酸0.5%+池塘沉积物20% | 园林废弃物 | 119 |
[ | |||
生物炭10%+微生物菌剂 | 厨余垃圾 | 39.1 |
[ | |||
竹炭3% | 猪粪 | 14.35 | 44.83 |
[ | ||
竹醋0.4% | 17.90 | 55.96 |
[ | |||
竹炭3%+竹醋0.4% | 29.83 | 74.53 |
[ | |||
沸石10%+氧化镁0.05 mol·k | 厨余垃圾 | 18.00 |
[ | |||
麦饭石10% | 猪粪 | 25.78 | 19.00 |
[ | ||
磷石膏10% | 59.74 | 8.15 |
[ | |||
麦饭石5%+磷石膏5% | 68.37 | 42.86 |
[ | |||
生物炭10% | 猪粪 | 64.91 |
[ | |||
生物炭10%+沸石10% | 78.14 |
[ | ||||
生物炭10%+沸石10%+木醋0.5% | 79.51 |
[ | ||||
生物炭10%+沸石10%+木醋1.0% | 80.52 |
[ | ||||
生物炭10%+沸石10%+木醋2.0% | 81.10 |
[ |
在不同类型添加剂的组合使用中,物理添加剂和化学添加剂的联用研究较为广泛。在园林废弃物堆肥中,生物炭、乳酸和池塘沉积物3种物质联合施用促进了有机物降解和铵态氮转化,使硝态氮含量相比于对照组提高了119
相对于单独添加一种类型保氮剂,耦合添加明显增强了保氮效果,但添加剂的组合类型及配比对氮素固持效果具有显著影响,应进一步了解添加剂对堆肥氮素转化代谢过程的影响机制,以便有针对性地调控不同堆肥底物的氮素循环。
好氧堆肥依赖于微生物的代谢活动。外源物质基于自身特性调整堆体环境参数,驱动微生物发出响应,包括群落演替、酶活性变化和相关基因丰度变化等(见

图2 外源物质调控堆肥氮循环示意图
Fig.2 Schematic diagram of regulated compost nitrogen cycle by exogenous substances
厚壁菌门(Firmicutes)、放线菌门(Actinobacteria)、变形菌门(Proteobacteria)、绿弯菌门(Chloroflexi)、拟杆菌门(Bacteroidetes)等堆肥微生物主要门与氮含量(NH3、NH―N、N2O和NO―N)之间存在显著相关关系,绿弯菌门、拟杆菌门、芽单胞菌门、变形菌门与 NO―N为极显著正相关,厚壁菌门与NH3、NH―N为正相
就酶促机制和功能基因丰度而言,参与氮循环的酶主要有amoA介导的氨单加氧酶、nxr介导的亚硝酸盐氧化还原酶、narG和napA介导的硝酸还原酶、nirS和nirK介导的亚硝酸盐还原酶、nosZ介导的氧化亚氮还原酶、hzo介导的肼氧化酶和nifH介导的固氮酶等。外源物质通过改变堆体温度和pH值,或直接作为激活剂/抑制剂作用于酶,影响酶活性。磺胺甲噁唑和诺氟沙星等抗生素能降低细菌amoA和nxrA的相对丰度,amoA的下降增加了NH3排放,nxrA下降则增强了堆肥初期N2O排
随着技术的不断发展和进步,基于分子生物学理论的检测和分析手段广泛应用于好氧堆肥中,研究者利用高通量测序技术分析堆肥微生物群落组成和演替,并基于宏基因组学技术从基因角度深入探究堆肥过程中的物质循环转化代谢通路,从而进一步揭示外源物质促进氮素保留的调控机制。总体而言,外源物质添加改善了堆体环境,目标类群微生物丰度增加,代谢活动增强,相关基因表达增加,酶活性进一步增强,达到调节物质转化的目的,即减少氮损失过程、增强氮固定过程。
外源添加剂通过对堆体环境及微生物生命活动的调控减少堆肥过程中的氮损失,物理、化学、生物添加剂均被广泛应用于好氧堆肥的氮素保留研究中。基于16S rRNA高通量测序、宏基因组学等手段,堆肥过程中的氮代谢通路不断清晰,外源物质添加后的微生物响应机理也更加明确。
尽管外源物质调控堆肥氮转化的效果十分显著,但是仍然面临着诸多问题,值得进一步探究: ①硝酸盐异化还原成铵反应在堆肥中研究较少,原理尚需明确;②外源添加剂控制氮素损失机理已取得了较为丰富的研究成果,在此基础上利用添加剂实现含氮物质定向调控将是未来的研究热点;③外源物质保氮效果受堆肥基质影响,外源物质与堆体基质的相互作用还需进一步研究。
基于目前存在的问题,外源物质调控堆肥氮素损失研究可以从硝酸盐异化还原成铵入手,对其发生机理、影响因素及添加剂作用机制进行系统剖析,完善堆肥氮素循环网络。基于此,筛选定向调控氮转化过程的添加剂,以适应不同需求堆肥产品的标准。在外源物质与堆体基质相互作用方面,明确添加剂对堆体理化性质、生化反应位点、微生物的影响,为研发高效堆肥固氮添加剂建立基础。
作者贡献声明
乔俊莲:论文写作及图表绘制。
徐仰红:论文写作。
何莹莹:论文及图表修改。
向远昆:论文修改。
姚全福:图表修改。
谢 丽:资助项目获取,论文修改及质量控制。
参考文献
ROS M, RODRIGUEZ I, GARCIA C, et al. Bacterial community in semiarid hydrocarbon contaminated soils treated by aeration and organic amendments[J]. International Biodeterioration & Biodegradation, 2014, 94: 200. [百度学术]
FERREIRA DE ARAUJO A S, DE MELO W J, SINGH R P. Municipal solid waste compost amendment in agricultural soil: changes in soil microbial biomass[J]. Reviews in Environmental Science and Bio-Technology, 2010, 9(1): 41. [百度学术]
LEI L, GU J, WANG X, et al. Effects of phosphogypsum and medical stone on nitrogen transformation, nitrogen functional genes, and bacterial community during aerobic composting[J]. Science of the Total Environment, 2021, 753: 141746. [百度学术]
SHAN G, LI W, GAO Y, et al. Additives for reducing nitrogen loss during composting: a review[J]. Journal of Cleaner Production, 2021, 307: 127308. [百度学术]
CUI H, OU Y, WANG L, et al. Tetracycline hydrochloride-stressed succession in microbial communities during aerobic composting: insights into bacterial and fungal structures[J]. Chemosphere, 2022, 289: 133159. [百度学术]
李思敏,张义竞,唐锋兵,等. 生物炭对污泥‒菌渣堆肥腐殖化与重金属钝化的影响[J]. 农业环境科学学报, 2022, 41(7): 1565. [百度学术]
LI Simin, ZHANG Yijing, TANG Fengbing, et al. Effects of biochar on humification and heavy metal passivation of sludge-fungus residue compost[J]. Journal of Agro-Environment Science, 2022, 41(7): 1565. [百度学术]
SAGDEEVA O A, KRUSIR G V, TSIKALO A L, et al. Composting of organic waste with the use of mineral additives[J]. Journal of Food Science and Technology:Ukraine, 2018, 12(1): 43. [百度学术]
ABDELLAH Y A Y, SHI Z, LUO Y, et al. Effects of different additives and aerobic composting factors on heavy metal bioavailability reduction and compost parameters: a meta-analysis[J]. Environmental Pollution, 2022, 307: 119549. [百度学术]
高云航,勾长龙,王雨琼,等.低温复合菌剂对牛粪堆肥发酵影响的研究[J].环境科学学报,2014,34(12): 3166. [百度学术]
GAO Yunhang, GOU Changlong, WANG Yuqiong, et al. Effects of the cold-adapted complex microbial agents on cattle manure composting[J]. Acta Scientiae Circumstantiae, 2014, 34(12): 3166. [百度学术]
CAO Y, WANG X, BAI Z, et al. Mitigation of ammonia, nitrous oxide and methane emissions during solid waste composting with different additives: a meta-analysis[J]. Journal of Cleaner Production, 2019, 235: 626. [百度学术]
钱靖华. 畜禽粪便堆肥高效固氮添加剂研究[J]. 安徽农学通报, 2021, 27(1): 134. [百度学术]
QIAN Jinghua. Study on high efficiency nitrogen fixation composting additive for livestock manure[J]. Anhui Agricultural Science Bulletin, 2021, 27(1): 134. [百度学术]
TANIKAWA D, NAKAMURA Y, TOKUZAWA H, et al. Effluent treatment in an aquaponics-based closed aquaculture system with single-stage nitrification denitrification using a down-flow hanging sponge reactor[J]. International Biodeterioration & Biodegradation, 2018, 132: 268. [百度学术]
LYCUS P, SORIANO-LAGUNA M J, KJOS M, et al. A bet-hedging strategy for denitrifying bacteria curtails their release of N2O[J]. PNAS, 2018, 115(46): 11820. [百度学术]
李思雨. 市政污泥好氧堆肥氮素转化及氨气控制研究[D]. 邯郸: 河北工程大学, 2022. [百度学术]
LI Siyu. Study on nitrogen transformation and ammonia control of municipal sludge aerobic composting[D]. Handan: Hebei University of Engineering, 2022. [百度学术]
PROSSER J I. Autotrophic nitrification in bacteria[J]. Advances in Microbial Physiology, 1989, 30: 125. [百度学术]
SHI M, ZHAO Y, ZHU L, et al. Denitrification during composting: biochemistry, implication and perspective[J]. International Biodeterioration & Biodegradation, 2020, 153: 105043. [百度学术]
YIN Y, GU J, WANG X, et al. Impact of copper on the diazotroph abundance and community composition during swine manure composting[J]. Bioresource Technology, 2018, 255: 257. [百度学术]
ZHONG X, ZENG Y, WANG S, et al. Insight into the microbiology of nitrogen cycle in the dairy manure composting process revealed by combining high-throughput sequencing and quantitative PCR[J]. Bioresource Technology, 2020, 301: 122760. [百度学术]
LIU N, HOU T, YIN H, et al. Effects of amoxicillin on nitrogen transformation and bacterial community succession during aerobic composting[J]. Journal of Hazardous Materials, 2019, 362: 258. [百度学术]
ZHANG Y, ZHAO Y, CHEN Y, et al. A regulating method for reducing nitrogen loss based on enriched ammonia-oxidizing bacteria during composting[J]. Bioresource Technology, 2016, 221: 276. [百度学术]
PEPE O, VENTORINO V, BLAIOTTA G. Dynamic of functional microbial groups during mesophilic composting of agro-industrial wastes and free-living (N2)-fixing bacteria application[J]. Waste Management, 2013, 33(7): 1616. [百度学术]
TANG J, LI X, CUI P, et al. Nitrification plays a key role in N2O emission in electric-field assisted aerobic composting[J]. Bioresource Technology, 2020, 297: 122470. [百度学术]
WANG K, WU Y, LI W, et al. Insight into effects of mature compost recycling on N2O emission and denitrification genes in sludge composting[J]. Bioresource Technology, 2018, 251: 320. [百度学术]
LIU T, AWASTHI M K, AWASTHI S K, et al. Effects of clay on nitrogen cycle related functional genes abundance during chicken manure composting[J]. Bioresource Technology, 2019, 291: 121886 [百度学术]
YANG Y, AWASTHI M K, WU L, et al. Microbial driving mechanism of biochar and bean dregs on NH3 and N2O emissions during composting[J]. Bioresource Technology, 2020, 315: 123829. [百度学术]
RAHMAN M M, SHAN J, YANG P, et al. Effects of long-term pig manure application on antibiotics, abundance of antibiotic resistance genes (ARGs), anammox and denitrification rates in paddy soils[J]. Environmental Pollution, 2018, 240: 368. [百度学术]
KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5): 263. [百度学术]
赵彬洁. 汉江流域金水河与淇河氮循环过程及微生物驱动机制[D]. 武汉: 中国科学院武汉植物园, 2021. [百度学术]
ZHAO Binjie. Nitrogen cycling and microbial driven mechanism of Jinshui River and Qi River in the Han River, China[D]. Wuhan: Wuhan Botanical Garden, Chinese Academy of Science, 2021. [百度学术]
任秀娜. 矿物材料对畜禽粪便好氧堆肥碳氮转化的影响机制研究[D]. 咸阳: 西北农林科技大学, 2022. [百度学术]
REN Xiuna. Effect and mechanisms of mineral amendment on carbon and nitrogen transformation during livestock manure composting[D]. Xianyang: Northwest Agriculture & Forestry University, 2022. [百度学术]
李太魁,王小非,郭战玲,等. 添加生物炭对猪粪好氧堆肥过程氮素转化与氨挥发的影响[J]. 生态环境学报,2021, 30(4): 874. [百度学术]
LI Taikui, WANG Xiaofei, GUO Zhanling, et al. Effects of biochar on nitrogen transformation and ammonia emissions during pig manure composting [J]. Ecology and Environmental Sciences, 2021, 30(4): 874. [百度学术]
WANG X, ZHAO Y, WANG H, et al. Reducing nitrogen loss and phytotoxicity during beer vinasse composting with biochar addition[J]. Waste Management, 2017, 61: 150. [百度学术]
刘立,张朝升,赵美花. 生物炭对好氧堆肥化处理影响的研究进展[J]. 环境科学与技术,2018, 41(9): 170. [百度学术]
LIU Li, ZHANG Chaosheng, ZHAO Meihua. Impacts of biochar on aerobic composting:a review[J]. Environmental Science & Technology, 2018, 41(9): 170. [百度学术]
WANG J, PAN J, MA X, et al. Solid digestate biochar amendment on pig manure composting: nitrogen cycle and balance[J]. Bioresource Technology, 2022, 349: 126848. [百度学术]
黄懿梅,曲东,李国学. 调理剂在鸡粪锯末堆肥中的保氮效果[J]. 环境科学, 2003(2): 156. [百度学术]
HUANG Yimei, QU Dong, LI Guoxue. Effect of adding amendments on preserving nitrogen during chicken manure and saw composting[J]. Environmental Science, 2003(2): 156. [百度学术]
HE Y, HUANG X, ZHANG H, et al. Insights into the effect of iron-carbon particle amendment on food waste composting: physicochemical properties and the microbial community[J]. Bioresource Technology, 2022, 351: 126939. [百度学术]
AWASTHI M K, WANG Q, HUANG H, et al. Influence of zeolite and lime as additives on greenhouse gas emissions and maturity evolution during sewage sludge composting[J]. Bioresource Technology, 2016, 216: 172. [百度学术]
李云,邱慧珍,张建斌,等. 添加过磷酸钙和糠醛渣对好氧堆肥过程中氨气排放和氮素转化的影响[J]. 环境工程学报, 2021, 15(12): 3992. [百度学术]
LI Yun, QIU Huizhen, ZHANG Jianbin, et al. Effects of superphosphate and furfural residue addition on NH3 emissions and nitrogen conversion during the aerobic composting[J]. Chinese Journal of Environmental Engineering, 2021, 15(12): 3992. [百度学术]
YANG F, LI G, SHI H, et al. Effects of phosphogypsum and superphosphate on compost maturity and gaseous emissions during kitchen waste composting[J]. Waste Management, 2015, 36: 70. [百度学术]
吴伟祥,李丽劼,吕豪豪,等. 畜禽粪便好氧堆肥过程氧化亚氮排放机制[J]. 应用生态学报,2012, 23(6): 1704. [百度学术]
WU Weixiang, LI Lijie, LÜ Haohao, et al. Mechanisms of nitrous oxide emission during livestock manure aerobic composting[J]. Chinese Journal of Applied Ecology, 2012, 23(6): 1704. [百度学术]
HAO X Y, LARNEY F J, CHANG C, et al. The effect of phosphogypsum on greenhouse gas emissions during cattle manure composting[J]. Journal of Environmental Quality, 2005, 34(3): 774. [百度学术]
EL KADER N A , ROBIN P, PAILLAT J, et al. Turning, compacting and the addition of water as factors affecting gaseous emissions in farm manure composting[J]. Bioresource Technology, 2007, 98(14): 2619. [百度学术]
LI Y B, LIU T T, SONG J L, et al. Effects of chemical additives on emissions of ammonia and greenhouse gas during sewage sludge composting[J]. Process Safety and Environmental Protection, 2020, 143: 129. [百度学术]
MEI J, JI K, SU L, et al. Effects of FeSO4 dosage on nitrogen loss and humification during the composting of cow dung and corn straw[J]. Bioresource Technology, 2021, 341: 125867. [百度学术]
CHENG F, HE Q, SONG M, et al. Effect of nitrilotriacetic acid on nitrogen conservation during aerobic composting[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 699. [百度学术]
徐荣,朱凌宇,王守红,等. 添加剂对好氧堆肥过程氮素固持和重金属钝化过程的影响[J]. 中国土壤与肥料,2021(3): 308. [百度学术]
XU Rong, ZHU Lingyu, WANG Shouhong, et al. Effects of additives on nitrogen fixation and heavy metal passivation processes in aerobic composting[J]. Soil and Fertilizer Sciences in China, 2021(3): 308. [百度学术]
WANG L, ZHAO L, ZHANG Y, et al. The active role of metabolic regulators in nitrogen loss reduction and organic nitrogen transformation during different materials composting[J]. Journal of Cleaner Production, 2022, 345: 131134. [百度学术]
LIU Y, MA R, LI D, et al. Effects of calcium magnesium phosphate fertilizer, biochar and spent mushroom substrate on compost maturity and gaseous emissions during pig manure composting[J]. Journal of Environmental Management, 2020, 267: 110649. [百度学术]
LEI L, GU J, WANG X, et al. Effects of phosphogypsum and medical stone on nitrogen transformation, nitrogen functional genes, and bacterial community during aerobic composting[J]. Science of the Total Environment, 2021, 753: 141746. [百度学术]
BOUCHER V D, REVEL J C, GUIRESSE M, et al. Reducing ammonia losses by adding FeCl3 during composting of sewage sludge[J]. Water Air and Soil Pollution, 1999, 112(3/4): 229. [百度学术]
ZHAO B, SUN X, HUANG J, et al. Application and effects of microbial additives in aerobic composting of organic solid wastes: a review[J]. Microbiology China, 2021, 48(1): 223. [百度学术]
刘艳婷,郑莉,宁寻安,等. 微生物菌剂对畜禽粪便好氧堆肥过程中重金属钝化与氮转化的影响[J]. 环境科学学报, 2020, 40(6): 2157. [百度学术]
LIU Yanting, ZHENG Li, NING Xun’an, et al. Effects of microbial agents on heavy metal passivation and nitrogen transformation in aerobic composting of livestock manure[J]. Acta Scientiae Circumstantiae, 40(6): 2157. [百度学术]
LU Y, GU W, XU P, et al. Effects of sulphur and Thiobacillus thioparus 1904 on nitrogen cycle genes during chicken manure aerobic composting[J]. Waste Management, 2018, 80: 10. [百度学术]
刘微,张津,李博文,等. 不同微生物菌剂对番茄秸秆好氧堆肥中氮磷钾元素的转化规律的影响[J]. 中国土壤与肥料, 2014(3): 88. [百度学术]
LIU Wei, ZHANG Jin, LI Bowen, et al. Effect of microorganism agents on tomato straw compost and changes of the NPK element forms[J]. Soil and Fertilizer Sciences in China, 2014(3): 88. [百度学术]
YANG F, LI Y, HAN Y, et al. Performance of mature compost to control gaseous emissions in kitchen waste composting[J]. Science of the Total Environment, 2019, 657: 262. [百度学术]
ZHAO H, LI S, JIANG Y, et al. Independent and combined effects of antibiotic stress and EM microbial agent on the nitrogen and humus transformation and bacterial community successions during the chicken manure composting[J]. Bioresource Technology, 2022, 354: 127237. [百度学术]
FENG X, ZHANG L. Combined addition of biochar, lactic acid, and pond sediment improves green waste composting[J]. Science of the Total Environment, 2022, 852: 158326. [百度学术]
HUANG X, HE Y, ZHANG Y, et al. Independent and combined effects of biochar and microbial agents on physicochemical parameters and microbial community succession during food waste composting[J]. Bioresource Technology, 2022, 366: 128023. [百度学术]
GUO H, GU J, WANG X, et al. Microbial driven reduction of N2O and NH3 emissions during composting: effects of bamboo charcoal and bamboo vinegar[J]. Journal of Hazardous Materials, 2020, 390: 121292. [百度学术]
CHAN M T, SELVAM A, WONG J W C. Reducing nitrogen loss and salinity during ‘struvite’ food waste composting by zeolite amendment[J]. Bioresource Technology, 2016, 200: 838. [百度学术]
WANG Q, AWASTHI M K, REN X, et al. Combining biochar, zeolite and wood vinegar for composting of pig manure: the effect on greenhouse gas emission and nitrogen conservation[J]. Waste Management, 2018, 74: 221. [百度学术]
陆晓林,朱为静,王经邦,等. 超高温堆肥促进氮素减损的微生物机制研究进展[J]. 微生物学通报,2022, 49(7): 2805. [百度学术]
LU Xiaolin, ZHU Weijing, WANG Jingbang, et al. Progress in the microbial mechanism for the promotion of nitrogen loss reduction by hyperthermophilic composting[J]. Microbiology China, 2022, 49(7): 2805. [百度学术]
MEI J, LI B, SU L, et al. Effects of potassium persulfate on nitrogen loss and microbial community during cow manure and corn straw composting[J]. Bioresource Technology, 2022, 363: 127919. [百度学术]
HE Y, ZHANG Y, HUANG X, et al. Deciphering the internal driving mechanism of microbial community for carbon conversion and nitrogen fixation during food waste composting with multifunctional microbial inoculation[J]. Bioresource Technology, 2022, 360: 127623. [百度学术]
CHEN Z, WU Y, WEN Q, et al. Insight into the effects of sulfamethoxazole and norfloxacin on nitrogen transformation functional genes during swine manure composting[J]. Bioresource Technology, 2020, 297: 122463. [百度学术]
HE X, YIN H, FANG C, et al. Metagenomic and q-PCR analysis reveals the effect of powder bamboo biochar on nitrous oxide and ammonia emissions during aerobic composting[J]. Bioresource Technology, 2021, 323: 124567. [百度学术]
成庆利,张龙龙,王大伟. 污泥‒麦秸秆混合物料好氧堆肥中磷酸缓冲液强化保氮效果及机理[J]. 环境污染与防治,2021, 43(10): 1225. [百度学术]
CHENG Qingli, ZHANG Longlong, WANG Dawei. Effect and mechanisms of strengthening nitrogen preservation by phosphate buffer during the aerobic composting of sewage sludge and straw mixture[J]. Environmental Pollution & Control, 2021, 43(10): 1225. [百度学术]