摘要
利用回收砖混材料设计了骨架密实型再生砖混混合料(RBCM);结合多种试验综合表征了RBCM在抗压、抗拉、贯入受力状态下的力学特征;考虑实际工况设计了试件循环和粒料循环两类耐久环境,并通过无侧限抗压强度试验量化了RBCM的耐久性能演变;依据现场试验段验证RBCM垫层的工程应用性能。结果表明,RBCM垫层的渗透性较差,宜在其上部设置透水垫层;水泥用量增加对RBCM抗压能力和破坏形态改善明显,其抗压和贯入强度较高,抗拉能力较差;少量水泥掺入使RBCM经过30次循环后的耐久系数仍大于50%;即使不掺水泥,再生砖混垫层的密实度和力学性能仍满足现行垫层设计指标的要求。
为适应日益增长的航空出行需求,我国近年来陆续开展旧机场改扩建工
机场道基垫层位于基层以下,厚度常为30~60 cm。山皮石是常用的填筑材料,但近年来其价格持续攀升。一方面,垫层方量较大,能够消纳大量建筑材料;同时,垫层结构层位较低,对原材料的强度和耐久性要求较低,因此是砖混类材料潜在的应用场景之
综述所述,学者们对再生砖混材料的力学和耐久性能展开了深入研究。但与水稳级配碎石相比,低掺量水稳全再生砖混材料的工作性能、耐久性能尚不明晰,缺少工程应用案例验
再生砖混材料(RBCM)在加工前为某村庄因机场改扩建拆迁产生的砖块与混凝土块混杂的建筑固废,被加工为(0,5] mm、(5,10] mm和(10,30] mm粒径的3档集料。砖块在各档集料中的质量比分别为85.0%、45.6%、23.9%。每档集料的基本物理性质如
粒径/mm | (0,5] | (5,10] | (10,30] | ||
---|---|---|---|---|---|
表观密度/(gc | 2.542 | 2.557 | 2.534 | ||
吸水率/% | 10.834 | 7.552 | |||
含水率/% | 9.656 | 7.571 | 5.908 | ||
含泥量/% | 8.614 | 1.994 | 1.184 | ||
压碎值/% | 41.100 | 35.700 | 32.400 |
再生砖混集料的粒径分布如
粒径/ mm | 不同筛孔尺寸(mm)质量通过率/% | |||||||
---|---|---|---|---|---|---|---|---|
31.5 | 26.5 | 19.0 | 9.5 | 4.75 | 2.36 | 0.60 | 0.075 | |
(0,5] | 100.0 | 100.0 | 100.0 | 100.0 | 68.5 | 46.3 | 21.9 | 0.4 |
(5,10] | 100.0 | 100.0 | 100.0 | 86.2 | 2.7 | 2.0 | 1.6 | 0.2 |
(10,30] | 100.0 | 99.9 | 68.2 | 5.2 | 1.4 | 1.3 | 1.0 | 0.2 |
加州承载比(CBR)试验根据《公路土工试验规程》(JTG 3430)进行。渗水试验根据《公路工程无机结合料稳定材料试验规程》(JTG E51)开展,每隔30 s记录一次读数。根据JTG E51开展无侧限抗压试验和间接抗拉试验。采用JTG E51顶面法测试抗压回弹模量。耐久性试验包括冻融循环和干湿循环,每种循环包括对养护后的试件进行处理(试件循环)和对再生砖混集料处理后再成型试件并养护(粒料循环)两类;冻融循环试验参考JTG E51,干湿循环试验参考ASTM D4843-8
试验方法 | 试验条件 | ||||
---|---|---|---|---|---|
冻融 循环 | 冻结 | 融化 | |||
温度/℃ | 作用时长/h | 温度/℃ | 作用时长/h | ||
-18 | 16 | 20 | 8 | ||
干湿 循环 | 润湿 | 干燥 | |||
温度/℃ | 作用时长/h | 温度/℃ | 作用时长/h | ||
20 | 16 | 60 | 8 |
再生砖混材料级配参考《民用机场飞行区土(石)方与道面基础施工技术规范》(MH/T 5014)推荐的水稳碎石底基层级配范围,参照李子良

图1 再生砖混垫层级配设计
Fig. 1 Gradation design of recycled brick-concrete cushion
采用重型击实成型,水泥掺量为0~3%,RBCM后数字为水泥掺量,试验结果如
材料类型 | 最大干密度/(gc | 最佳含水率/% |
---|---|---|
RBCM‒0 | 1.85 | 11.5 |
RBCM‒1% | 1.87 | 13.1 |
RBCM‒2% | 1.90 | 12.6 |
RBCM‒3% | 1.91 | 12.7 |
随着水泥掺量增加,RBCM的渗水系数分别为11.33、8.67、7.00、4.33 mL∙mi

图2 RBCM渗水试验结果
Fig. 2 Permeability test results of RBCM
RBCM无侧限抗压强度试验结果如

图3 RBCM无侧限抗压强度与抗压回弹模量试验结果
Fig. 3 Unconfined compressive strength test results of RBCM
随水泥掺量的增大,RBCM的强度提高。当水泥掺量较少时,再生砖微粉与水泥的比值较大,再生砖微粉降低胶凝材料体系的水化放热速率和放热能越显著。然而,水泥掺量的增加削弱了再生砖微粉的负面影响,促进了体系早期水化反应,使混合料早期强度贡献增长,故7 d与28 d的强度比值降

图4 RBCM单轴抗压破坏形态
Fig. 4 Uniaxial compressive failure pattern of RBCM
RBCM在7 d和28 d龄期的回弹模量与抗压强度的关系如

图5 RBCM回弹模量与抗压强度的关系
Fig. 5 Resilience modulus versus compressive strength of RBCM

图6 RBCM的间接抗拉试验结果
Fig. 6 Indirect tensile test results of RBCM
尽管增大水泥掺量后试件顶面空隙减少,但即使掺入3%水泥,试件的侧面和顶面仍存在较多空隙。一方面,再生砖混集料表面孔隙较多,相当部分的胶凝材料会进入集料内部孔隙,导致黏结集料界面的胶凝材料减少;另一方面,其表面黏附的废旧水泥砂浆等形成了界面过渡区,不利于应力的传

图7 RBCM的CBR试验结果
Fig. 7 CBR test results of RBCM
泡水4 d后,RBCM浸水膨胀率与水泥掺量的关系如
研究地区地下水位埋深约2 m,夏季频繁降雨可能使垫层处于干湿交替环境。冬季长达数月,标准冻结深度约50 cm,垫层材料可能受冻融损伤。此外,拆迁产生的建筑固废长时间堆放地表,也受冻融和干湿损伤潜在影响,因此设置试件循环(对试件处理)和粒料循环(对粒料处理)两种耐久环境。
经试件冻融循环后,混合料抗压强度的变化如

图8 冻融循环后RBCM力学性能的变化
Fig. 8 Variation of mechanical properties of RBCM after freeze-thaw cycle
研究表明,对数函数模型和Morgan Mercer Flodin (MMF)生长模型可描述水稳碎石在长期冻融下抗压强度的衰变规

图9 冻融循环后RBCM力学性能演变模型
Fig. 9 Variation model of mechanical properties of RBCM after freeze-thaw cycle

图10 干湿循环后RBCM力学性能的变化
Fig. 10 Variation of mechanical properties of RBCM after dry-wet cycle
试件经过粒料干湿循环后的力学性能如

图11 干湿循环后RBCM力学性能演变模型
Fig. 11 Variation model of mechanical properties of RBCM after dry-wet cycle
为评估再生砖混垫层的工程应用效果,探究RBCM适宜施工工艺,在面积为18 000
垫层的密实度如

图12 试验段垫层密实度
Fig. 12 Compactness of cushion in test section
垫层的力学性能如

图13 试验段垫层力学性能
Fig. 13 Mechanical properties of cushion in test section
山皮石材料单价约70元⋅
(1) |
(2) |
(3) |
式中:为垫层m的经济效益;为垫层m与对照垫层的性能提升;为垫层m与对照垫层的成本增长;为垫层m第i类性能提升;为垫层m第i类性能权重;为垫层m第i类性能值;为对照垫层m第i类性能值;为垫层类型。
若垫层各项性能权重相同,每种垫层经济效益如
垫层类型 | 经济效益 |
---|---|
RBCM‒0 | 2.48 |
RBCM‒1% | 2.48 |
RBCM‒2% | 2.46 |
RBCM‒3% | 1.88 |
(1)RBCM渗透性较差,不易排出水分,故再生砖混垫层主要起隔水、防冻作用;为保证结构排水需求,建议在再生砖混垫层上部设置透水垫层。
(2)水泥用量增加对RBCM抗压能力和破坏形态的改善很明显,当水泥掺量大于1%后,RBCM的无侧限抗压强度便能满足垫层设计要求,而抗压回弹模量和水稳级配碎石相当,可用拟合公式对两指标进行准确的相互预测。
(3)因胶结物质较少,低掺量下RBCM抗拉性能较差,但CBR远高于标准碎石;在浸水4 d后,RBCM有轻微的膨胀变形,但满足道基均匀性的要求。
(4)RBCM的抗压强度随冻融循环和干湿循环次数增加而持续降低,掺入1%水泥即可大幅度提高RBCM的抗冻系数和软化系数;对于水稳RBCM,粒料循环和试件循环在其残余抗压强度上不存在较大差异;可用MMF生长模型描述RBCM残余抗压强度与冻融循环次数的关系,可用一次函数描述RBCM残余抗压强度与干湿循环次数的关系。
(5)现场试验段应用表明,即使不掺水泥,再生砖混垫层的密实度和力学性能也能满足现行垫层设计指标要求;当水泥掺量大于1%时,其强度远高于设计要求,RBCM‒1%垫层的经济性较高;综合而言,1%~2%的水泥稳定再生砖混材料宜作为垫层设置在冻结深度较大、冻融频繁的机场。
作者贡献声明
吴 杰:试验,数据整理分析,论文撰写与修订。
赵咨沣:试验,数据整理分析,论文撰写与修订。
姜昌山:提出研究主题与论文思路。
曹正龙:试验监管与指导,结果验证与核实。
徐西永:技术咨询。
袁 捷:文字校对,稿件修订。
参考文献
戚春香, 李瑶, 杨简, 等. 青藏高原机场跑道多年冻土地基温度场特征[J]. 交通运输工程学报, 2019, 19(1): 33. [百度学术]
QI Chunxiang, LI Yao, YANG Jian, et al. Characteristics of temperature field of airfield runway permafrost subgrade in Qinghai-Tibetan Plateau [J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 33. [百度学术]
李子良, 张栋, 范涛, 等. 基于级配重组的骨架密实型水泥稳定砖混建渣级配优化方法[J]. 交通科技, 2023(5): 133. [百度学术]
LI Ziliang, ZHANG Dong, FAN Tao, et al. Optimization method of slag gradation for skeletal dense cement stabilized brick construction based on gradation recombination [J]. Transportation Science & Technology, 2023(5): 133. [百度学术]
MENG T, LIAN S, YING K, et al. Feasibility study of cement-stabilized materials using 100% mixed recycled aggregates from perspectives of mechanical properties and microstructure [J]. Reviews on Advanced Materials Science, 2021, 60(1): 490. [百度学术]
LIU J, LI J, LEI H, et al. Ground improvement of dredged fills with two improved vacuum preloading methods: case study [J]. Journal of Geotechnical and Geoenvironmental Engineering, American Society of Civil Engineers, 2022, 148(12): 05022008. [百度学术]
王小明, 肖源杰, 杨涛, 等. 颗粒破碎和界面损伤对水稳再生骨料透水基层材料强度的控制机理[J]. 中南大学学报(自然科学版), 2023, 54(12): 4777. [百度学术]
WANG Xiaoming, XIAO Yuanjie, YANG Tao, et al. Controlling mechanism of particle crushing and interfacial damage on the serength of cement-stabilized recycled aggregate permeable base material [J]. Journal of Central South University (Science and Technology), 2023, 54(12): 4777. [百度学术]
余其俊, 马婷, 张同生, 等. 再生砖粉粒径对水泥水化动力学与微结构发展的影响[J]. 华南理工大学学报(自然科学版), 2023, 51(11): 63. [百度学术]
YU Qijun, MA Ting, ZHANG Tongsheng, et al. Effect of particle size on hydration kinetics and microstructure development of recycled brick powder-cement pastes [J]. Journal of South China University of Technology (Natural Science), 2023, 51(11): 63. [百度学术]
YAN S, WANG B, MA J, et al. The effect of waste clay brick content on performance of cement-stabilized recycled concrete aggregate in pavement base and subbase applications [J]. Journal of Materials in Civil Engineering, 2023, 35(6): 04023135. [百度学术]
SU C, LI L. Study on strength enhancement factors of cement-stabilized recycled aggregate [J]. Advances in Civil Engineering, 2022, 2022: e9997483. [百度学术]
WANG T, SONG H, YUE Z, et al. Freeze–thaw durability of cement-stabilized macadam subgrade and its compaction quality index[J]. Cold Regions Science and Technology, 2019, 160: 13. [百度学术]
ASTM International. Test method for wetting and drying test of solid wastes: D4843-88 [S]. West Conshohocken:ASTM International, 2016. [百度学术]
HAFEEZ I, KAMAL M A, ISHAQ M A, et al. A laboratory-based research study to investigate the aggregate packing characteristics and its influence on asphaltic mixtureʼs performance [J]. Arabian Journal for Science and Engineering, 2015, 40(11): 3119. [百度学术]
张俊, 翁兴中, 刘军忠, 等. 复合固化砂土力学及水稳性能试验研究[J]. 材料导报, 2014, 28(24): 115. [百度学术]
ZHANG Jun, WENG Xingzhong, LIU Junzhong, et al. Experimental study on mechanical and water stability of composite solidified sand[J]. Materials Review, 2014, 28(24): 115. [百度学术]
CEDERGGREN H R, O’BRIEN K H, ARAMN J A, et al. Guidelines for the design of subsurface drainage systems for highway structural sections [R]. Washington DC: Federal Highway Administration, 1972. [百度学术]
段川, 王腾, 邹晓翎. 基于空隙空间分布特征的沥青路面渗水成因分析[J]. 公路交通科技, 2023, 40(12): 1. [百度学术]
DUAN Chuan, WANG Teng, ZOU Xiaoling. Analysis of water seepage causes of asphalt pavement based on void spatial distribution characteristics [J]. Journal of Highway and Transportation Research and Development, 2023, 40(12): 1. [百度学术]
TRIPURA D D, SINGH K D. Behavior of cement-stabilized rammed earth circular column under axial loading [J]. Materials and Structures, 2016, 49(1): 371. [百度学术]
周志刚, 王梓龙, 蒋少稀. 级配对低剂量水泥改性级配碎石性能的影响[J]. 长沙理工大学学报(自然科学版), 2018, 15(4): 9. [百度学术]
ZHOU Zhigang, WANG Zilong, JIANG Shaoxi. Effect of graded low dose cement on performance of graded gravel [J]. Journal of Changsha University of Science and Technology (Natural Science), 2018, 15(4): 9. [百度学术]
尧俊凯. 湿陷性粉质黏土的组成成分及细观特征[J]. 铁道建筑, 2019, 59(2): 46. [百度学术]
YAO Junkai. Composition and microscopic characteristics of collapsible silty clay [J]. Railway Construction, 2019, 59(2): 46. [百度学术]
HUANG F, HU Z, LI H, et al. Deformation mechanisms of cement paste with ultra-low water-to-cement ratios under different curing conditions at early ages [J]. Construction and Building Materials, 2023, 364: 129951. [百度学术]
LIU C, WANG D, WANG Z, et al. Dynamic splitting tensile test of granite under freeze-thaw weathering [J]. Soil Dynamics and Earthquake Engineering, 2021, 140: 106411. [百度学术]
SUDDEEPONG A, INTRA A, HORPIBULSUK S, et al. Durability against wetting-drying cycles for cement-stabilized reclaimed asphalt pavement blended with crushed rock [J]. Soils and Foundations, 2018, 58(2): 333. [百度学术]
汤长西, 颜峰, 孔垂元, 等. 干湿循环下红砂岩颗粒崩解特性及微观机理研究[J]. 材料导报, 2023, 37(S2): 278. [百度学术]
TANG Changxi, YAN Feng, KONG Chuiyuan, et al. Study on particle disintegration characteristics and microscopic mechanism of red sandstone under dry and wet cycle [J]. Materials Review, 2023, 37(S2): 278. [百度学术]
WU J, ZHAO Z, JIANG C, et al. Recent development and application of natural fiber in asphalt pavement [J]. Journal of Cleaner Production, 2024, 449: 141832. [百度学术]