摘要
探究多层加筋土体系中筋材‒道砟间合理间距对拉拔抗力的影响。通过改进传统单层格栅‒道砟拉拔数值试验模型,实现了多层格栅等位移幅值下的同步拉拔的离散元模拟。数值模型采用刚性颗粒簇模拟道砟颗粒非球型特征,并运用黏结颗粒串模拟受力均匀的三向土工格栅,同时考虑了道砟颗粒间的嵌固效应和土工格栅的拉伸特性。以平均拉拔力、特定层位处界面强度与筋材应变为指标,科学识别多层格栅加筋道砟界面联动行为,并从颗粒尺度系统揭示了多层加筋体系层间互扰机制。结果表明,多层格栅的拉拔力和增长速率小于单层格栅,尤其在高法向应力下差异更明显,且存在不均匀性。随着加筋层数增加,筋材抗力差异显著,同时摩擦耗能增大。层间颗粒位移存在叠合,导致筋材宏观力学响应减弱,其内在原因是颗粒力链发育不够充分。法向接触力分析结果进一步表明,多层格栅加筋体系下的层间互扰可能导致法向接触力分布的不稳定性。
碳达峰、碳中和目标的提出,彰显了我国在全球气候治理上的大国担当,也为碳排放占比过半的建筑工程行业提出了新的要求,绿色低碳已然成为基础设施建设的关键指标之
全面审视关于筋‒土相互作用的研究成果发现,借助直剪、拉拔试验及相关数值方法等手段进行筋土相互作用分析时筋材往往单层布置,这与工程实践中筋材分区域多层布置现状存在较大出入。在非单层格栅加筋行为研究层面,赵雨朦
同时,现行规
参考刘泽

图1 多层格栅加筋道砟试样
Fig. 1 Specimens for ballast reinforced with different geogrid layers
在单层格栅‒道砟数值拉拔试验框
项目 | 颗粒密度ρ/(g· | 法向刚度kn/(N· | 切向刚度ks/(N· | 平行黏结法向强度/Pa | 平行黏结切向强度/Pa | 平行黏结法向刚度 | 平行黏结切向刚度 | 平行黏结半径乘数 | 孔隙率 | 摩擦 系数 |
---|---|---|---|---|---|---|---|---|---|---|
格栅 | 800 |
1.77×1 |
0.88×1 |
5.68×1 |
5.68×1 |
4.56×1 |
4.56×1 | 0.50 | 0.50 | |
道砟 | 2 700 |
0.52×1 |
0.52×1 | 0.45 | 0.45 |

图2 道砟级配曲
Fig. 2 Particle size distribution of ballas

图3 格栅性状与平面布设图
Fig. 3 Characteristic and plan layout of geogrid
需要说明的是,根据Stahl

图4 不同法向应力下平均拉拔力‒拉拔位移变化曲线
Fig. 4 Average pullout force versus pullout displacement under different conditions
为进一步阐明法向应力对单层和多层格栅加筋道砟的影响,参照《公路工程土工合成材料试验规程
(1) |
式中:τ为界面抗剪强度;Fmax为拉拔力峰值;L、B分别为

图5 格栅‒道砟界面抗剪切强度拟合
Fig. 5 Interface strength fitting of reinforced ballast
既有研究结果表

图6 格栅分段应变随拉拔位移的变化
Fig. 6 Geogrid segmental strain versus pull-out displacement

图7 不同拉拔位移下的颗粒位移分布矢量图
Fig. 7 Vector of particle displacement distribution at different pull-out displacement
砟颗粒的强调动区域出现叠合,进一步解释了前序多层加筋工况下筋材抗力发挥衰减的内在原因。
已经形成共

图8 不同加筋层数下能量耗散分配
Fig. 8 Energy dissipation distribution at different reinforcement layers
散体颗粒的宏观强度取决于颗粒间法向接触力及其各向异性演

图9 不同加筋层数下的颗粒接触力链
Fig. 9 Contact force chain at different reinforcement layers
采用文献[

图10 同一层位处的法向接触力及其各向异性演化
Fig. 10 Normal contact force and its anisotropy evolution at the same reinforcement position
由
本文通过特定高度道砟层内不同层数格栅数值拉拔试验,研究了格栅层数对其宏观加筋效果的影响,分析了颗粒体系位移调动、能量耗散、接触力链及其各向异性演化规律,从宏‒细观尺度揭示了多层格栅加筋道砟界面联动‒互扰行为。主要研究结论如下:
(1)多层格栅的拉拔力峰值和增长速率小于单层格栅,尤其在高法向应力下差异更明显。层间颗粒调动互扰导致多层格栅的拉拔响应不均匀。设计中需在整体抗力和经济性间平衡,合理选择格栅加筋层数。
(2)多层格栅与单层格栅在拉拔过程中表现出相似的调动机制,但多层格栅的前段应变增长相对平缓。随着加筋层数增加,特定层位筋材抗力发挥出现显著差异。同时,摩擦耗能随着格栅层数增加而增大,而格栅应变储能占比相应减少。
(3)多层加筋体系下层间颗粒位移调动存在叠合,多层格栅拉拔过程中表现出更广泛的填料调动,但层间互扰导致筋材宏观力学响应减弱。多层加筋工况下筋材的平均拉拔抗力衰减的内在原因是强相互作用区内的颗粒被相邻层位的格栅交叉调动导致颗粒力链发育不够充分。
(4)单层格栅在拉拔力峰值时已形成主方向明确的横八字形强力链,而多层加筋的接触力呈现出局部集中特征。法向接触力的分析结果进一步表明了层间互扰可能导致颗粒间法向接触力的不稳定分布。
作者贡献声明
苗晨曦:程序设计与实现。
张 威:数值模拟与图表处理。
朱孝振:细观分析。
陈小艺:组构演化分析。
张 军:试验设计,研究方案制定。
参考文献
中国建筑节能协会.中国建筑能耗研究报告2020[J].建筑节能,2021,49(2):1. [百度学术]
China Association of Building Energy Efficiency.China building energy consumption research report 2020 [J]. Building Energy Efficiency, 2021,49(2):1. [百度学术]
高珊, 肖成志, 丁鲁强, 等. 台阶式加筋土挡墙面板水平位移与稳定性的关系研究[J]. 岩石力学与工程,2023,42(1):235. [百度学术]
GAO Shan, XIAO Chengzhi, DING Luqiang, et al. Study on the correlation between the lateral facing deformation and factor of safety for tiered GRS wall [J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(1):235. [百度学术]
王裘申,徐超,张振,等. 交通荷载下加筋土桥台工作性能试验研究[J]. 岩土力学,2022,43(12):3416. [百度学术]
WANG Qiushen, XU Chao, ZHANG Zhen, et al. Experimental study on working performance of reinforced soil abutment subjected to traffic loads[J]. Rock and Soil Mechanics, 2022,43(12):3416. [百度学术]
ZHUANG Yan , CUI Xiaoyan. Case studies of reinforced piled high-speed railway embankment over soft soils[J]. International Journal of Geomechanics, 2016,16(2):06015005. [百度学术]
肖成志,路遥,郑鸿,等.加筋土结构筋‒土界面特性和筋材位移变化规律试验研究[J].土木与环境工程学报,2024,46(4):29. [百度学术]
XIAO Chengzhi, LU Yao, ZEHNG Hong, et al. Experimental study on interface properties between geogrids and sand and reinforcement displacement distribution of einforced soil structures based on pullout tests[J]. Journal of Civil and Environmental Engineering, 2024,46(4):29. [百度学术]
王家全,康博文,周圆兀,等. 填料粗粒含量对筋土界面拉拔性状的影响[J].岩土力学,2022,43(5):1249. [百度学术]
WANG Jiaquan, KANG Bowen, ZHOU Yuanwu, et al. Effect of coarse particle content on pull-out behavior of reinforced-soil interface[J]. Rock and Soil Mechanics, 2022,43(5):1249. [百度学术]
李水江,童艳光,王军,等. 双向循环荷载作用下砾石‒格栅界面动力剪切特性[J].岩土力学,2022,43(S2):291. [百度学术]
LI Shuijiang, TONG Yanguang, WANG Jun, et al. Cyclic shear properties of gravel-geogrid interface under bidirectional cyclic loading[J]. Rock and Soil Mechanics,2022,43(S2):291. [百度学术]
MIAO C X, JIA Y F, ZHANG J, et al. DEM simulation of the pullout behavior of geogrid-stabilized ballast with the optimization of the coordination between aperture size and particle diameter[J]. Construction and Building Materials, 2020, 255(3): 119359. [百度学术]
赵雨朦,徐东升,刘华北.土工格栅与砂土相互作用的单剪试验研究[J]. 岩石力学与工程, 2018,37(S1):3722. [百度学术]
ZHAO Yumeng, XU Dongsheng, LIU Huabei. Study of interaction behavior between geogrids and sand with simple shear test[J]. Chinese Journal of Rock Mechanics and Engineering, 2018,37(S1):3722. [百度学术]
陈成,段永达,芮瑞,等. 基于拉拔试验和离散元模拟的单、双层土工格栅加固道砟的研究[J]. 岩土力学,2021,42(4):954. [百度学术]
CHEN Cheng, DUAN Yongda, RUI Rui, et al.Study of single and two-layer geogrid reinforced bal lasted trackbed using pull-out test and discrete element method[J]. Rock and Soil Mechanics, 2021,42(4):954. [百度学术]
中华人民共和国交通运输部.公路土工合成材料应用技术规范: JTG/T D32—2012 [S].北京:人民交通出版社,2015.Ministry of Transport of the People’s Republic of China. Technical specifications for application of geosynthetics in highway: JTG/T D32—2012 [S].Beijing:China Communications Press,2012. [百度学术]
刘泽, 廖鹏, 何矾, 等. 加筋土挡墙筋材铺设参数优化研究[J]. 工业建筑, 2021,51(2):135. [百度学术]
LIU Ze,LIAO Peng,HE Fan,et al. Study on optimization of reinforcement laying parameters for reinforced soil retaining wall [J]. Industrial Architecture,2021,51(2):135. [百度学术]
STAHL M, KONIETZKY H, TEKAMP L , et al. Discrete element simulation of geogrid-stabilised soil [J]. Acta Geotechnica, 2014, 9(6): 1073. [百度学术]
WANG P,YIN Y, ZHOU W H, et al. Micro-mechanical analysis of soil-structure interface behavior under constant normal stiffness condition with DEM [J]. Acta Geotechnica,2022, 17: 2711. [百度学术]
YANY J, ZHEN Y J.Soil-structure interface modeling with the nonlinear incremental approach [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45: 1381. [百度学术]
JING X J, ZHOU W H, ZHU H X, et al. Analysis of soil-structural interface behavior using three-dimensional DEM simulations [J]. International Journal for Numerical and Analytical Methods in Geomechanics,2018,42,339. [百度学术]
中华人民共和国交通运输部. 公路工程土工合成材料试验规程 :JTG E50—2006 [S].北京:人民交通出版社,2006.Ministry of Transport of the People’s Republic of China. Test methods of geosynthetics for highway engineering: JTG E50—2006 [S]. Beijing:China Communications Press,2006. [百度学术]
陈榕,栾茂田,赵维,等. 土工格栅拉拔试验及筋材摩擦受力特性研究[J]. 岩土力学,2009,30(4):960. [百度学术]
CHEN Rong,LUAN Maotian, ZHAO Wei, et al. Research on pull-out test and frictional resistance characteristic of geogrids [J]. Rock and Soil Mechanics, 2009,30(4):960. [百度学术]
MIAO C X, ZHENG J J, ZHANG R J. DEM modeling of pullout behavior of geogrid reinforced ballast:the effect of particle shape [J]. Computers and Geotechnics,2017,81:249. [百度学术]
ROTHENBURG L, BATHURST R J. Analytical study of induced anisotropy in idealized granular materials [J]. Geotechnique, 1989,39(4):601. [百度学术]
BATHURST R J, ROTHENBURG L. Observations on stress-force-fabric relationships in idealized granular materials [J]. Mechanics of Materials, 1990, 9(1): 65. [百度学术]