摘要
为实现氨氢燃料在内燃机上的应用,基于Cantera平台建立了氨氢燃料内燃兰金循环模型,进行了不同氨氢掺混比例、过量空气系数和喷水量等条件下内燃兰金循环氨氢燃料发动机燃烧过程数值模拟,从热力学循环效率和典型污染物排放两方面分析和评价不同边界条件对燃烧特性的影响。结果表明:过量空气系数和缸内喷水量增加分别提升热力学循环效率2.66%和7.00%,喷水的作用效果更显著;氨氢燃料燃烧终了排放污染物NOx主要以NO为主;缸内喷水有利于氨氢发动机氮氧化物排放量降低,应用喷水技术后,燃烧产物中NO和NO2的排放体积分数降低幅度达到37%。
双碳目标提出以后,传统碳基燃料在内燃机领域使用受限,零碳排放内燃
Chen
Awad
当前对ICRC应用的研究主要集中在使用传统含碳燃料的发动机方面。Fu
结合氨氢燃料性质和传统ICRC发动机燃烧过程影响因素,在Cantera环境下建立内燃兰金理论循环燃烧模型,探究不同掺氢比、压缩比、过量空气系数和喷水量对ICRC循环过程的影响。通过Cantera改变边界条件,从而进行不同工况下氨氢燃料燃烧过程数值模拟,最终从热力学循环效率和典型污染物排放数量两方面分析氨氢燃料结合ICRC应用于发动机的特点,为提升氨氢燃料发动机热效率和降低其NOx排放提供一种参考途径。
建立的计算模型是对金少也

图1 ICRC理论循环计算模型建立与验证
Fig. 1 Establishment and verification of ICRC theoretical cycle model
Wang
在ICRC循环中,过程1—2为闭口系统内工质的定熵压缩过程,根据定熵过程特点,热量变化量为零,则1—2过程外界对系统做功为
(1) |
式中:为初始状态下即喷水前的混合气质量;、分别为压缩前后混合气的比热力学能。依据等熵过程,可计算压缩终了温度和压力,为
(2) |
(3) |
式中:CR为发动机的压缩比;为混合气的绝热指数;和分别为混合气的初始温度和压力。
过程2—3为理想的定容燃烧过程,对外做功为零,燃料燃烧过程的焓变转换为系统压力的增加,即
(4) |
根据理想气体状态方程,得到燃烧终了温度和压力,为
(5) |
(6) |
式中:、分别为点2和点3混合气的物质的量;为点2的压力;、分别为点2和点3的总体积;、分别为点2和点3的焓值;为点3的比体积;为通用气体常数。
燃烧过程结束后,循环水在此时瞬间喷入缸内并汽化,假定喷水及水的汽化过程瞬间完成,则3—5过程气体总体积未发生变化。因此,根据压缩终了体积即可确定喷水后平衡时气体总体积。
根据闭口系统能量方程式,由于系统绝热,过程3—5有质量为的工质水流入系统,无工质流出,则
(7) |
式中:为喷入液态水的比焓;m和u分别为任意时刻混合气的质量和体积;下标cv代表体积恒定;、分别为喷水前后混合气的总质量;、分别为喷水前后混合气的比热力学能。由比热力学能与温度的关系推出真实平衡温度的计算式,为
(8) |
式中:和分别为喷水前后混合气的定容比热容。采用的计算方法首先假定喷水后至水蒸气蒸发汽化过程结束,混合气稳定状态下的平衡温度为,由该温度读取该状态的定容比热容,并将其代入
由压缩比和初始状态的比体积确定压缩终了混合气的比体积。因此,在确定真实的平衡温度以后,由该温度和点5比体积可以确定点5状态,即可读取点5平衡状态下的各热力学参数。
过程5—6为等熵膨胀过程,由于膨胀终了后气体总体积与压缩前相同,可以确定点6状态,进而确定其比热力学能。则膨胀过程工质对外做功为
(9) |
可以计算循环功、热力学循环效率为
(10) |
(11) |
式中:为燃料的质量;为燃料的低热值。
通过改变边界条件程序以完成不同工况的设定,进而模拟氨氢燃料自然进气、压缩、燃烧和排气的全过程。使用Cantera计算不同边界条件下氨氢燃料内燃兰金循环过程峰值压力、温度、热力学循环效率和典型污染物的排放量等。设定边界条件如
气体初始温度/K | 气体初始压力/MPa | 进气组分及体积分数 | 压缩比 | 喷水温度/K | 喷水压力/MPa | 掺氢体积分数/% | 过量空气系数 | 喷水摩尔分数/% |
---|---|---|---|---|---|---|---|---|
298 | 1 |
O2 21% N2 79% | 10, 12, 14, 16, 18, 20 | 373 | 20 | 0~30 | 1~6 | 0~60 |
由于氨氢燃料具有较高的自燃温度和辛烷值,即具有较好的抗爆震能力,则可以适当提升氨氢发动机的压缩比,从而提升发动机的热效
掺氢比(Hydrogen Fraction, HF)定义为氢气在燃料混合气中的体积分数,在相同的环境条件下,等价于氢气在燃料混合气中的物质的量分数,即
(12) |
式中:为氢气的物质的量;为氧气的物质的量。
Benbellil
过量空气系数(excess air ratio)的定义为实际供给的空气量相对于燃料完全燃烧时理论空气量的倍数。Jin
喷水摩尔分数(Water Fraction, WF)定义为燃烧结束时,缸内喷入水的物质的量占混合气总物质的量的分数,即
(13) |
式中:为水的物质的量;和分别为燃料与空气的物质的量。
随着缸内喷水量增加,缸内温度逐渐降低,从缸内热力循环角度考虑,喷水量的设定需有上限,该数值由做功冲程结束时缸内温度决定。在程序计算时,将此温度的下限值设置为水的临界温度,从而保证做功结束以后缸内水始终以气态形式存在,水蒸气的液化将导致混合气比体积降低,缸压瞬间下降,进而严重影响循环性能表现;此外,液滴的产生加剧缸内金属部件的腐蚀和润滑油的稀释,最终降低发动机的耐久性。因此,需要保证做功结束后缸内具有一定的温度,以排气温度不低于水的临界温度为限制条件,WF的范围为0~60%。
假设喷水过程、水蒸气的汽化过程以及气体混合过程均为瞬间完成,这些假设虽然不符合物理现实,但该计算方法可以较为直观地研究和分析ICRC内燃机的工作过程核心参数,以及各边界条件对热力学循环效率、排放的影响规律,找到氨氢内燃兰金循环发动机的热力学循环效率理论上限,为将来的实机试验开展起到参考和指导作用。对于喷水对发动机实际循环的影响,可以通过改变喷水时刻、喷水压力、喷水脉宽和适当提高燃料中的氢比例等多种方式,实现喷水对发动机工作过程的负面影响最小化,最终降低不稳定燃烧的可能性。

图2 未喷水工况下过量空气系数为1时掺氢比对ICRC燃烧过程的影响
Fig. 2 Influence of hydrogen fraction and compression ratio on combustion process of ICRC at a λ of 1, without water spray
如

图3 未喷水工况下压缩比为20、过量空气系数为1时掺氢比对ICRC排放的影响
Fig. 3 Influence of hydrogen fraction on emissions of ICRC at a CR of 20 and a λ of 1, without water spray

图4 未喷水工况下掺氢比为15%时过量空气系数对ICRC燃烧过程的影响
Fig. 4 Influence of excess air ratio and compression ratio on combustion process of ICRC at an HF of 15%, without water spray

图5 未喷水工况下压缩比为20、掺氢比为15%时过量空气系数对ICRC排放的影响
Fig. 5 Influence of excess air ratio on emissions of ICRC at a CR of 20 and an HF of 15%, without water spray
在探究喷水量对ICRC燃烧过程参数的影响时,由于假定水在燃烧终了时刻瞬间喷入,压缩及燃烧过程发生在喷水时刻之前,故在压缩比和氧浓度保持不变的条件下,压缩终了温度、压力及燃烧终了温度、压力均不会发生改变。然而,喷水后水蒸发汽化吸热将导致缸内混合气温度降低、压力上升,当水蒸气与缸内气体充分混合至蒸发汽化过程结束,混合气达到稳定状态时,得到新的缸内温度和压力,将其定义为平衡温度和平衡压力。图
(14) |
(15) |

图6 压缩比为20、过量空气系数为1、喷水温度为373 K时喷水量和掺氢比对ICRC燃烧过程的影响
Fig. 6 Influence of water fraction and hydrogen fraction on combustion process of ICRC at a CR of 20, a λ of 1, and a water spray temperature of 373 K

图7 压缩比为20、掺氢比为15%、过量空气系数为1、喷水温度为373 K时喷水量对ICRC排放的影响
Fig. 7 Influence of water fraction on emissions of ICRC at a CR of 20, an HF of 15%, a λ of 1, and a water spray temperature of 373 K
考虑发动机实际工作过程中的各种损失,如散热损失、换气损失和燃烧损失等,可以将内燃机热力学循环效率转换为内燃机的理论指示热效率。内燃机的理论指示热效率和热力学循环效率之间可视为存在线性的转化关系,如
(16) |
式中:为内燃机的理论指示热效率;为热力学循环效率;C为考虑实际工作的损失后2种效率之间的修正系数。由于发动机实际工况的复杂性,很难确定修正系数的精确值。Killingsworth

图8 不同工况下内燃机热力学循环效率与理论指示热效率的对比
Fig. 8 Comparison of thermodynamic cycle efficiency and indicated thermal efficiency of ICE under different working conditions
基于Cantera平台建立ICRC理论循环计算模型,进行不同边界条件下氨氢燃料燃烧过程数值模拟,最终从热力学循环效率和NOx排放两方面分析了发动机的燃烧特性,得到结论如下:
(1)对于未喷水工况,增加过量空气系数使热力学循环效率提升。在压缩比为20、掺氢体积分数为15%的工况下,过量空气系数升高6倍,热力学循环效率由55.31%提升至57.97%,增加约2.66%。
(2)燃烧终了时刻向缸内喷射373 K过热水显著提升了热力学循环效率。在压缩比为20、过量空气系数为1、不同掺氢比工况下喷射占混合气总体积60%的过热水,热力学循环效率均提升约7%,以掺氢比30%的工况为例,热力学循环效率由54.98%提升至61.85%。
(3)对于未喷水工况,在不同掺氢比和过量空气系数条件下,使用氨氢燃料的ICRC发动机排放污染物NOx主要以NO为主,其排放数量远高于N2O和NO2,排放物中未燃烧NH3的数量极低。在喷水工况下,NOx排放数量随喷水量增加而降低,喷水以后NO、NO2排放数量降低幅度最高达到37%。
作者贡献声明
张冠宇:模型建立,数值计算,论文撰写。
于 洋:论文思路指导及论文数据分析。
田 径:论文统筹、规划。
吴志军:概念提出,研究方法提出,学术指导,论文校阅。
参考文献
LI L, GONG Y, DENG J, et al. CO2 reduction request and future high-efficiency zero-emission argon power cycle engine[J]. Automotive Innovation, 2018, 1(1): 43. [百度学术]
王智化,余作超,陈晨霖,等.新型零碳氨燃料的燃烧特性研究进展[J].华中科技大学学报(自然科学版),2022,50(7):24. DOI:10.13245/j.hust.220703. [百度学术]
WANG Zhihua, YU Zuochao, CHEN Chenlin, et al. Research progress on combustion characteristics of new zero carbon ammonia fuel[J]. Journal of Huazhong University of Science and Technology (Natural Science), 2022, 50(7): 24. DOI:10.13245/j.hust.220703. [百度学术]
夏鑫,蔺建民,李妍,等.氨混合燃料体系的性能研究现状[J].化工进展,2022,41(5):2332. DOI:10.16085/j.issn.1000-6613.2021-1131. [百度学术]
XIA Xin, LIN Jianmin, LI Yan, et al. Research status of performance of ammonia mixed fuel system[J]. Progress in chemical industry, 2022, 41(5): 2332. DOI:10.16085/j.issn.1000-6613.2021-1131. [百度学术]
郭朋彦,刘子川,邵方阁,等.氢氨清洁无污染无碳燃料在发动机上的应用分析[J].汽车实用技术,2016(4):81. DOI:10.16638/j.cnki.1671-7988.2016.04.028. [百度学术]
GUO Pengyan, LIU Zichuan, SHAO Fangge, et al. Analysis on the application of hydrogen ammonia clean, pollution-free and carbon free fuel in engines[J]. Automotive practical technology, 2016(4): 81. DOI:10.16638/j.cnki.1671-7988.2016.04.028. [百度学术]
FRIGO S, GENTILI R. Analysis of the behaviour of a 4-stroke Si engine fuelled with ammonia and hydrogen[J]. International Journal of Hydrogen Energy, 2013, 38(3): 1607. [百度学术]
CHEN J, JIANG X, QIN X, et al. Effect of hydrogen blending on the high temperature auto-ignition of ammonia at elevated pressure[J]. Fuel, 2021, 287: 119563. [百度学术]
LEE J H, KIM J H, PARK J H, et al. Studies on properties of laminar premixed hydrogen-added ammonia/air flames for hydrogen production[J]. international journal of hydrogen energy, 2010, 35(3): 1054. [百度学术]
OTOMO J, KOSHI M, MITSUMORI T, et al. Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion[J]. International Journal of Hydrogen Energy, 2018, 43(5): 3004. [百度学术]
AWAD O I, ZHOU B, HARRATH K, et al. Characteristics of NH3/H2 blend as carbon-free fuels: A review[J]. International Journal of Hydrogen Energy, 2022, 48(96): 38077. [百度学术]
PUGH D, BOWEN P, VALERA-MEDINA A, et al. Influence of steam addition and elevated ambient conditions on NOx reduction in a staged premixed swirling NH3/H2 flame[J]. Proceedings of the combustion institute, 2019, 37(4): 5401. [百度学术]
CHAI W S, BAO Y, JIN P, et al. A review on ammonia, ammonia-hydrogen and ammonia-methane fuels[J]. Renewable and Sustainable Energy Reviews, 2021, 147: 111254. [百度学术]
Bilger, R W. Zero release combustion technologies and the oxygen economy[C]//Fifth International Conference on Technologies and Combustion for a Clean Environment. Lisbon: [S.n.], 1999: 1039–1046. [百度学术]
WU Z, FU L, GAO Y, et al. Thermal efficiency boundary analysis of an internal combustion rankine cycle engine[J]. Energy, 2016, 94: 38. [百度学术]
康哲,陈思远,邓俊,等.柴油机纯氧燃烧过程及缸内喷水影响的模拟研究[J].同济大学学报(自然科学版),2020,48(1):87. [百度学术]
KANG Zhe, CHEN Siyuan, DENG Jun, et al. Simulation study on pure oxygen combustion process of diesel engine and effect of in cylinder water injection[J]. Journal of Tongji University (Natural Science), 2020, 48(1): 87. [百度学术]
冯上司,康哲,吴志军,等.缸内高温喷水量对压燃式内燃兰金循环发动机燃烧及性能影响的试验研究[J].工程热物理学报,2022,43(4):1123. [百度学术]
FENG Shangsi, KANG Zhe, WU Zhijun, et al. Experimental Study on the Influence of High Temperature Water Injection Rate in Cylinder on Combustion and Performance of Compression Ignition Internal Combustion Rankin Cycle Engine[J]. Journal of Engineering Thermophysics, 2022, 43(4): 1123. [百度学术]
金少也,邓俊,龚学海,等.氩气循环发动机热力学循环效率影响因素的热力学分析[J].内燃机学报,2020,38(4):351. DOI:10.16236/j.cnki.nrjxb.202004046. [百度学术]
JIN Shaoye, DENG Jun, GONG Xuehai, et al. Thermodynamic analysis on factors influencing the thermal conversion efficiency of the argon power cycle engine[J]. Transactions of CSICE, 2020, 38(4): 351. DOI:10.16236/j.cnki.nrjxb.202004046. [百度学术]
JIN S, DENG J, LI L. Thermodynamic and chemical analysis of the effect of working substances on the argon power cycle[C]//SAE WCX Digital Summit. Detroit: [S.n.]: 12-15. [百度学术]
WANG C, JIN S, DENG J, et al. An innovative argon/miller power cycle for internal combustion engine: thermodynamic analysis of its efficiency and power density[J]. Automotive Innovation, 2023, 6(1): 76. [百度学术]
WANG D, JI C, WANG S, et al. Numerical study of the premixed ammonia-hydrogen combustion under engine-relevant conditions[J]. International Journal of Hydrogen Energy, 2021, 46(2): 2667. [百度学术]
DINESH M H, PANDEY J K, KUMAR G N. Study of performance, combustion, and NOx emission behavior of an SI engine fuelled with ammonia/hydrogen blends at various compression ratio[J]. International Journal of Hydrogen Energy, 2022, 47(60): 25391. [百度学术]
BENBELLIL M A, LOUNICI M S, LOUBAR K, et al. Investigation of natural gas enrichment with high hydrogen participation in dual fuel diesel engine[J]. Energy, 2022, 243: 122746. [百度学术]
VALERA-MEDINA A, PUGH D G, MARSH P, et al. Preliminary study on lean premixed combustion of ammonia-hydrogen for swirling gas turbine combustors[J]. International Journal of Hydrogen Energy, 2017, 42(38): 24495. [百度学术]
MASHRUK S, ZITOUNI S E, BREQUIGNY P, et al. Combustion performances of premixed ammonia/hydrogen/air laminar and swirling flames for a wide range of equivalence ratios[J]. International Journal of Hydrogen Energy, 2022, 47(97): 41170. [百度学术]
JIN S, SHU B, HE X, et al. A study on autoignition characteristics of H2—O2 mixtures with diluents of Ar/N2 in rapid compression machine for argon power cycle engines[J]. Fuel, 2021, 303: 121291. [百度学术]
LI J, HUANG H, KOBAYASHI N, et al. Study on using hydrogen and ammonia as fuels: combustion characteristics and NOx formation: hydrogen and ammonia as fuels[J]. International Journal of Energy Research, 2014, 38(9): 1214. [百度学术]
MASHRUK S, KOVALEVA M, ALNASIF A, et al. Nitrogen oxide emissions analyses in ammonia/hydrogen/air premixed swirling flames[J]. Energy, 2022, 260: 125183. [百度学术]
LI J, HUANG H, KOBAYASHI N, et al. Study on using hydrogen and ammonia as fuels: combustion characteristics and NOx formation[J]. International Journal of Energy Research, 2014, 38(9):1214. [百度学术]
ZHANG M, AN Z, WANG L, et al. The regulation effect of methane and hydrogen on the emission characteristics of ammonia/air combustion in a model combustor[J]. International Journal of Hydrogen Energy, 2021, 46(40): 21013. [百度学术]
ARIEMMA G B, SORRENTINO G, RAGUCCI R, et al. Ammonia/methane combustion: stability and NOx emissions[J]. Combustion and Flame, 2022, 241: 112071. [百度学术]
KILLINGSWORTH N J, RAPP V H, FLOWERS D L, et al. Increased efficiency in SI engine with air replaced by oxygen in argon mixture[J]. Proceedings of the Combustion Institute, 2011, 33(2): 3141. [百度学术]
江星雨,李和壁. 铁路集装箱运输服务网络设计优化模型及算法[J]. 兰州交通大学学报,2020,39(5):31. [百度学术]
JIANG Xingyu, LI Hebi. Optimization model and algorithm of railway container transport service network design [J]. Journal of Lanzhou Jiaotong University, 2020, 39(5): 31. [百度学术]
兰泽康,何世伟,许琰. 考虑车底和集装箱周转的中欧班列动态服务网络设计研究[J]. 铁道学报,2021,43(4):25. [百度学术]
LAN Zekang, HE Shiwei, XU Yan. Study on design of dynamic service network for China railway express considering fleet and container circulation [J]. Journal of the China Railway Society, 2021, 43(4): 25. [百度学术]
闫伟,朱晓宁,邓宇君,等. 中欧班列去程运输组织优化模型[J]. 铁道学报,2019,41(2):1. [百度学术]
YAN Wei, ZHU Xiaoning, DENG Yujun, et al. Optimization model of outbound transportation organization for China railway express [J]. Journal of the China Railway Society, 2019, 41(2): 1. [百度学术]
XIA Y, WANG H X, ZHOU Y,et al. A daily container-to-train assignment model based on the passenger transportation-like organization strategy for railway container transportation[J]. Transportmetrica A: Transport Science, 2021, 2019 (12): 1. [百度学术]
魏玉光,苏寅,张超,等. 我国铁路集装箱旅客化快捷运输系统创新[J]. 中国铁路,2016,646(4):1. [百度学术]
WEI Yuguang, SU Yin, ZHANG Chao, et al. Innovation of passenger-like fast transport system of railway container[J]. Journal of China Railway, 2016, 646(4): 1. [百度学术]
夏阳,魏玉光,赖艺欢,等. 基于运输成本的铁路集装箱旅客化运输系统开行方案[J]. 铁道学报,2019,41(4):10. [百度学术]
XIA Yang, WEI Yuguang, LAI Yihuan, et al. Research on the line plan of passenger-like transport system of railway container based on transportation organization model[J]. Journal of the China Railway Society, 2019, 41(4): 10. [百度学术]
夏阳,魏玉光,赖艺欢,等. 铁路集装箱旅客化运输系统开行方案分阶段编制方法研究[J]. 铁道学报,2019,41(7):10. [百度学术]
XIA Yang, WEI Yuguang, LAI Yihuan, et al. A phased train plan approach for passenger-like transport system of railway container[J]. Journal of the China Railway Society, 2019, 41(7): 10. [百度学术]