摘要
为了研究粘贴角形钢板对钢桥面板顶板‒U肋焊喉疲劳裂纹的修复效果,首先对关注细节的疲劳破坏模式和加固后疲劳性能的提升开展试验和理论研究,然后基于Abaqus有限元软件建立线弹性断裂力学模型,结合最大周向应力准则探究不同裂纹深度和初始倾角对裂纹扩展特性的影响,并在此基础上验证了粘贴角形钢板对疲劳裂纹的加固效果。结果表明,U肋腹板面外弯曲变形是导致顶板‒U肋焊喉疲劳开裂的控制因素。该裂纹属于以Ⅰ型为主导的复合型疲劳裂纹,等效应力强度因子随裂纹深度增加而增大,且当初始倾角接近45°时达到最大。所预测的裂纹扩展行为与试验观测结果近乎一致,扩展路径与顶板夹角介于30°~45°之间。对比未加固试件,加固后相应开裂部位关键测点的疲劳应力幅降低90.5%,疲劳寿命显著延长,且粘贴层完好。
正交异性钢桥面板是大跨径桥梁设计中常用的一种结构形式,具有自重小、强度高和施工方便等优点。然而,钢桥面板由顶板、纵肋和横肋等部件通过大量焊缝连接而成,在外部车辆动荷载和内部焊接缺陷等综合作用下容易产生焊缝疲劳开裂问题。顶板‒U肋连接焊缝部位的疲劳裂纹数量较多,是疲劳损伤较为严重的部位之
目前,国内外学者针对顶板‒U肋疲劳细节展开了广泛研究,大多关注焊根或焊趾起裂并贯穿顶板的疲劳开裂行
针对顶板‒U肋焊喉贯穿型裂纹处治,关键在于限制顶板和U肋之间的面外变
综上,粘贴钢板技术在钢桥面板裂纹处治方面具有良好的应用前景,然而对于顶板‒U肋焊喉裂纹的粘钢加固体系研究较为缺乏。为此,本文重点关注顶板‒U肋焊缝由焊根处萌生的焊喉贯穿型裂纹,采用粘贴角形钢板的方法对该易损细节进行加固,通过局部足尺疲劳试验和数值断裂力学方法评价加固效果,以验证该无损加固方法的有效性和可靠性。
根据文献[

图1 顶板‒U肋细节各类型疲劳裂纹
Fig.1 Different types of fatigue cracks in U rib-to-deck joints

图2 实桥顶板‒U肋焊喉裂纹
Fig.2 Typical weld throat crack of U rib-to-deck in actual bridge
以顶板‒U肋连接焊缝疲劳开裂为研究对象,同时兼顾试验规模以及加载便利性,设计了缺口U肋局部足尺试件,如

图3 未加固试件尺寸及预制裂纹(单位:mm)
Fig.3 Dimensions of un-strengthened specimen and pre-crack(unit: mm)
加固钢板采用与顶板、U肋相互贴合的角形钢板(下文简称角钢)。角钢及胶层细部尺寸如

图4 粘贴角钢加固试件
Fig.4 Specimen strengthened by bonding angle-shaped steel
采用PMW‒100电液式脉动疲劳试验机进行静力试验和疲劳试验,共考虑了顶板竖向加载和腹板侧向加载2种加载模式。顶板竖向加载如

图5 试件加载方案
Fig.5 Loading schemes of specimens
试件编号 | 疲劳荷载/kN | 荷载幅/kN | 加载循环次数/万次 | 累积加载次数/万次 |
---|---|---|---|---|
DL‒1 | 5~25 | 20 | 100.0 | 401.0 |
8~40 | 32 | 150.0 | ||
10~50 | 40 | 50.0 | ||
15~75 | 60 | 84.8 | ||
20~100 | 80 | 16.2 | ||
DL‒2 | 10~50 | 40 | 349.8 | |
10~70 | 60 | 40.7 | 390.5 | |
RL‒1 | 1~3 | 2 | 114.8 | 114.8 |
RL‒2 | 1~4 | 3 | 68.0 | 68.0 |
SRL‒1 | 1~3 | 2 | 200.0 | 200.0 |
SRL‒2 | 1~3 | 2 | 100.0 | 953.0 |
1~4 | 3 | 600.0 | ||
1~6 | 5 | 60.0 | ||
2~20 | 18 | 150.0 | ||
4~40 | 36 | 43.0 |
注: DL表示顶板竖向加载下未加固试件;RL、SRL分别表示腹板侧向加载下未加固试件与加固试件。
为了监测焊缝纵向上疲劳损伤状况,在试件纵向4个测区(A、B、C和D测区)跨中、1/8截面、2/8截面、3/8截面、5/8截面、6/8截面、7/8截面布置应变片,获取共计7个横截面横向应变数据,如

图6 应变测点布置
Fig.6 Layout of strain gauges
试件编号 | 等效荷载幅/kN | 累积加载循环次数/万次 | 疲劳破坏现象 |
---|---|---|---|
DL‒1 | 45 | 401.0 | 顶板贯穿型裂纹,扩展深度13 mm |
DL‒2 | 43 | 390.5 | 未发现裂纹,停机 |
RL‒1 | 2 | 114.8 | 焊喉贯穿型裂纹,扩展深度8 mm |
RL‒2 | 3 | 68.0 | 焊喉贯穿型裂纹,扩展深度8 mm |
SRL‒1 | 2 | 200.0 | 焊缝未裂,胶层完好 |
SRL‒2 | 8 | 953.0 | 裂纹沿顶板扩展,钢‒胶层界面开裂 |

图7 疲劳失效模式
Fig.7 Fatigue failure mode

图8 腹板侧向加载模式下各试件的位移和应力
Fig.8 Displacement and stress of specimens under web lateral loading mode

图9 SRL‒2测点应力幅
Fig.9 Measured stress amplitude of SRL-2
基于Miner等效疲劳损伤准则和S‒N曲线进行未加固试件和加固试件的疲劳性能分析。由于出现自焊根萌生并向焊喉扩展的疲劳裂纹,因此将腹板焊根处的实测应力幅作为评估焊缝焊喉开裂的疲劳强度指标。为了方便比较,未加固试件的等效疲劳强度计算式为
(1) |
式中:为等效疲劳强度;为实测应力幅;为实际加载循环次数;为等效加载循环次数,此处取200万次;为材料常数,一般取3。
疲劳强度计算结果如
试件编号 | 等效荷载幅/kN | 加载至开裂次数/万次 | 实测等效应力幅/MPa | 疲劳强度/MPa |
---|---|---|---|---|
RL‒1 | 2 | 114.8 | 99.1 | 82.4 |
RL‒2 | 3 | 68.0 | 126.6 | 88.4 |
SRL‒1 | 2 | 200.0(未裂) | 9.4(加固) | |
SRL‒2 | 8 | 953.0 | 24.9(加固) |
根据线弹性断裂力学理论,工程中裂纹主要存在Ⅰ型(张开型)、Ⅱ型(滑移型)和Ⅲ型(撕开型)3种扩展模式,应力强度因子是衡量裂纹扩展驱动力的重要参
以腹板侧向加载模式下的加固试件为研究对象。由于纵向上设置了通长的预制裂纹,因此建立含静态裂纹的二维平面模型,如

图10 有限元模型
Fig.10 FEM model
模型 | 有限元模型计算值/MPa | 实测平均值/MPa | 偏差/% |
---|---|---|---|
未加固 | 189.37 | 177.1 | 7 |
加固 | 16.70 | 15.9 | 5 |
未加固的顶板‒U肋焊喉裂纹扩展特性是研究疲劳裂纹加固的基础,因此分别计算不同裂纹深度L和不同初始倾角α组合下的应力强度因子ΔK,结果如
(2) |
式中:KⅠ、KⅡ分别为Ⅰ型和Ⅱ型裂纹应力强度因子;Ke为等效应力强度因子。

图11 不同初始倾角下应力强度因子随裂纹深度的变化
Fig.11 Variation of stress intensity factors at different initial dip angles with crack depths
线弹性断裂力学中,裂纹是否扩展可按照经典Paris疲劳扩展曲线的判
(3) |
式中:Kth为应力强度因子扩展门槛值,按照BS7910―2005规
复合开裂模式决定了裂纹并不按照预期的路径沿初始倾角扩展,而是可能沿某一角度继续扩展。为此,基于最大周向拉应力准则可按下式计算理论裂纹扩展角θ以预测各工况下裂纹的扩展趋势:
(4) |
规定θ绕裂纹延伸线逆时针旋转为正,反之为负。
各工况下未加固试件裂纹扩展角计算结果如

图12 加固前裂纹扩展角随裂纹深度的变化
Fig.12 Variation of crack propagation angle with crack depths before repairing

图13 加固前裂纹扩展方向
Fig.13 Crack propagation direction before repairing

图14 典型焊喉裂纹扩展路径
Fig.14 Typical weld throat crack propagation path
以裂纹深度4 mm为例,考虑不同角钢厚度和胶层厚度对裂纹尖端等效应力强度因子幅值的影响,结果如

图15 不同加固参数对应的等效应力强度因子幅值
Fig.15 Amplitude of equivalent stress intensity factors corresponding to different strengthening parameters

图16 加固后ΔKe随裂纹深度的变化
Fig.16 Variation of ΔKe with crack depths after repairing
与

图17 加固后裂纹扩展角随裂纹深度的变化
Fig.17 Variation of crack propagation angle with crack depths after repairing
(1)未加固的顶板‒U肋焊喉细节疲劳试验结果表明,U肋腹板面外反复弯曲变形是诱发焊喉贯穿型疲劳开裂的主要原因,试件的平均疲劳强度约为85.4 MPa。断裂力学分析结果表明,该细节属于Ⅰ型主导的复合型疲劳开裂模式,裂纹尖端等效应力强度因子幅值随裂纹深度的增加而增加,且当初始倾角接近45°时最大,这说明该方向裂纹扩展驱动力较大。基于最大周向应力准则预测的裂纹扩展趋势与顶板呈30°~45°夹角范围,与疲劳试验结果较为吻合。
(2)采用粘贴角钢技术可显著提高顶板‒U肋焊喉疲劳细节局部刚度,降低焊缝细节的疲劳应力,从而延长该细节的疲劳寿命。数值分析结果表明,对于不同初始倾角和深度的疲劳裂纹,加固后等效应力强度因子幅值降低80%~97%,因此疲劳裂纹扩展速率得以降低。当裂纹深度小于7 mm时进行疲劳加固可对焊喉疲劳开裂产生良好的抑制效果。此外,增加角钢厚度可以减小等效应力强度因子,但降幅趋缓。
本文尝试将粘贴钢板技术引入正交异性钢桥面板疲劳开裂维护与加固中,疲劳试验和有限元分析结果均验证了粘贴钢板技术对顶板‒U肋焊喉细节具有优异的疲劳加固效果,该方法可为正交异性钢桥面板疲劳加固技术提供新的选择,并且满足无损加固需求。然而,对于粘接加固的结构,疲劳加固效果依赖于钢板与胶层之间的粘接性能,如何粘结性能以及脱胶开裂程度对加固效果的影响将是下一阶段研究的重点。
作者贡献声明
吕志林:试验设计和试验结果分析,数据分析以及论文撰写与修改。
姜 旭:项目负责人,指导试验设计、数据分析、论文写作与修改。
强旭红:试验设计和试验研究执行人,指导试验设计和论文写作。
徐志民:试验研究顾问,对试验过程提出建议。
参考文献
WU W, KOLSTEIN H, VELJKOVIC M. Fatigue resistance of rib-to-deck welded joint in OSDs, analyzed by fracture mechanics[J]. Journal of Constructional Steel Research, 2019, 162:105700. [百度学术]
张清华,卜一之,李乔. 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报, 2017,30(3): 14. [百度学术]
ZHANG Qinghua, BU Yizhi, LI Qiao. Review on fatigue problems of orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30(3):14 [百度学术]
SIM H B, UANG C M. Stress analyses and parametric study on full-scale fatigue tests of rib-to-deck welded joints in steel orthotropic decks[J]. Journal of Bridge Engineering, 2012, 17(5):765. [百度学术]
朱劲松,郭耀华.正交异性钢桥面板疲劳裂纹扩展机理及数值模拟研究[J].振动与冲击, 2014, 33(14):40. [百度学术]
ZHU Jingsong, GUO Yaohua. Numerical simulation on fatigue crack growth of orthotropic steel highway bridge deck[J]. Journal of Vibration and Shock,2014,33(14):40. [百度学术]
周绪红,朋茜,秦凤江,等.钢桥面板顶板与纵肋连接焊根位置疲劳损伤特征[J].交通运输工程学报,2018,18(1):1. [百度学术]
ZHOU Xuhong, PENG Xi, QIN Fengjiang, et al. Fatigue damage characteristics of rib-to-deck weld root on orthotropic steel bridge deck[J]. Joumal of Traffic and Transportation Engineering,2018,18(1):1. [百度学术]
JOHN W F, JOHN M B. Evaluation of cracking in the rib-to-deck welds of the Bronx-Whitestone Bridge[J]. Journal of Bridge Engineering, 2016, 21(3):4015065. [百度学术]
WANG P, PEI X, DONG P, et al. Traction structural stress analysis of fatigue behaviors of rib-to-deck joints in orthotropic bridge deck[J]. International Journal of Fatigue, 2019, 125:11. [百度学术]
LI M, SUZUKI Y, HASHIMOTO K, et al. Experimental study on fatigue resistance of rib-to-deck joint in orthotropic steel bridge deck[J]. Journal of Bridge Engineering, 2018, 23(2):04017128. [百度学术]
OCEL J M, CROSS B, WRIGHT W J, et al. Optimization of rib-to-deck welds for steel orthotropic bridge decks[R]. Washington DC: Federal Highway Administration, 2017. [百度学术]
LUO P, ZHANG Q, BAO Y. Rib loading effects on weld root fatigue failure modes at rib-to-deck welded joint[J]. Fatigue & Fracture of Engineering Materials & Structures, 2020,43:1399. [百度学术]
傅慧,吉伯海,徐捷,等.钢桥面板顶板与U肋焊缝裂纹类型及扩展特征[J].扬州大学学报(自然科学版),2021,24(2):66. [百度学术]
FU Hui, JI Bohai, XU Jie, et al. Crack types and propagation characteristics of the U rib-to-deck joint weld of orthotropic steel bridge decks[J]. Journal of Yangzhou University (Natural Science Edition),2021,24(2):66. [百度学术]
周家刚,徐志民. 粘贴钢板技术修复钢箱梁疲劳裂纹[J]. 公路, 2020, 65(11):224. [百度学术]
ZHOU Jiagang, XU Zhiming. Repairing fatigue cracks of steel box girder by bonding steel plate technology[J]. Highway, 2020, 65(11):224. [百度学术]
ABELN B, GESSLER A, STAMMEN E, et al. Strengthening of fatigue cracks in steel bridges by means of adhesively bonded steel patches[J]. The Journal of Adhesion, 2022, 98(6):827. [百度学术]
WANG C S, ZHAI M S, DUAN L, et al. Cold reinforcement and evaluation of steel bridges with fatigue cracks[J]. Journal of Bridge Engineering, 2018, 23(4):04018014. [百度学术]
DE FREITAS S T, KOLSTEIN H, BIJLAARD F. Fatigue assessment of full-scale retrofitted orthotropic bridge decks[J]. Journal of Bridge Engineering, 2017, 22(11): 04017092. [百度学术]
DE FREITAS S T, KOLSTEIN H, BIJLAARD F. Structural monitoring of a strengthened orthotropic steel bridge deck using strain data[J]. Structural Health Monitoring, 2012, 11(5): 558. [百度学术]
VOERMANS J, SOUREN W, BOSSELAAR M. Strengthening the orthotropic steel deck structure of the movable bridge across the Hartelkanaal, the Netherlands[J]. Structural Engineering International, 2014, 24(3): 420. [百度学术]
苏庆田,薛智波,韩旭,等.开口U形肋组合桥面板基本力学性能[J].同济大学学报(自然科学版),2017,45(5):651. [百度学术]
SU Qingtian, XUE Zhibo, HAN Xu, et al. Performance of the orthotropic composite bridge deck with U-shaped stiffener[J]. Journal of Tongji University(Natural Science),2017,45(5):651. [百度学术]
蒋嵘, 吴冲. 顶板与纵肋接头处焊趾与焊根疲劳开裂的对比研究[J]. 应用力学学报, 2020, 37(5): 1923. [百度学术]
JIANG Rong, WU Chong. Comparative study on fatigue cracking of weld toe and weld root at joint between deck and longitudinal rib[J]. Chinese Journal of Applied Mechanics, 2020, 37(5): 1923. [百度学术]
Eurocode 3, design of steel structures. Part 1-9, fatigue: BS EN 1993-1-9∶2005[S]. Brussel: European Commitee for Standardization, 2005. [百度学术]
KUNA M. Finite elements in fracture mechanics: theory-numerics-applications[M]. Dordrecht: Springer , 2013. [百度学术]
British Standards Institution. Guide to methods for assessing the acceptability of flaws in metallic structures: BS 7910―2005[S]. London: BSI Standards Limited, 2005. [百度学术]
国家市场监督管理总局.在用含缺陷压力容器安全评定:GB/T 19624―2019[S].北京:中国标准出版社,2019. [百度学术]
State Administration for Market Regulation. Safety assessment of in-service pressure vessels containing defects:GB/T 19624―2019 [S]. Beijing: Standards Press of China, 2019. [百度学术]
Bridge Engineering,2018, 23(8):04018049. [百度学术]
MOUSTAFA S E. Ultimate load test of a segmentally constructed prestressed concrete, I:beam [J]. PCI Journal,1974, 19(4):54. [百度学术]
RAMIREZ G, MACGREGOR R, KREGER M E. Shear strength of segmental structures[C]//Proceedings of the Workshop AFPC External Prestressing in Structures. Sceaux:[s.n.], 1993: 287-296. [百度学术]
TURMO J, RAMOS G, APARICIO A C. FEM study on the structural behaviour of segmental concrete bridges with unbonded prestressing and dry joints: simply supported bridges [J].Engineering Structures,2005, 27(11):1652. [百度学术]
TURMO J, RAMOS G, APARICIO A C. Shear strength of dry joints of concrete panels with and without steel fibres: application to precast segmental bridges [J].Engineering Structures,2006, 28(1):23. [百度学术]
TURMO J, RAMOS G, APARICIO A C. FEM modelling of unbonded post-tensioned segmental beams with dry joints [J].Engineering Structures,2006, 28(13):1852. [百度学术]
李国平. 体外预应力混凝土桥梁设计计算方法 [D]. 上海: 同济大学, 2007. [百度学术]
LI Guoping. Calculation method of external prestressed concrete bridge design[D]. Shanghai: Tongji University, 2007. [百度学术]
LI G, YANG D, YU L. Combined shear and bending behavior of joints in precast concrete segmental beams with external tendons [J].Journal of Bridge Engineering,2013, 18(10):1042. [百度学术]
BRENKUS N R, WAGNER D J, HAMILTON H R. Experimental evaluation of shear strength of an innovative splice for prestressed precast concrete girders [J].Journal of Bridge Engineering,2016, 21(6): 04016018. [百度学术]
TAKEBAYASHI T, DEEPRASERTWONG K, LEUNG Y W J. A full-scale destructive test of a precast segmental box girder bridge with dry joints and external tendons [J].Structures & Buildings,2015, 104(3):297. [百度学术]
SIVALEEPUNTH C, NIWA J, NGUYEN D H, et al. Shear carrying capacity of segmental prestressed concrete beams [J].Doboku Gakkai Ronbunshuu E: JSCE, 65(1):63. [百度学术]
中华人民共和国交通运输部. 公路钢筋混凝土及预应力混凝土桥涵设计规范: JTG 3362―2018[S]. 北京; 人民交通出版社,2018. [百度学术]
Ministry of Transport of the People’s Republic of China. Specification for design of highway reinforced concrete and prestressed concrete bridges and culverts: JTG 3362―2018 [S]. Beijing:People’s Communications Press, 2018. [百度学术]