摘要
采用平面激光诱导荧光(PLIF)法对不同温差、水流流速、侧板开孔面积条件下水上光伏基座的水体交换进行观测。实验结果表明:光伏基座滞留水体的质量与时间呈负指数关系,原水体在基座内的滞留时间由温差、周边水流流速及基座侧板开孔率共同决定。在较小的温差下,水流流速对基座内的水体交换影响显著。而当温差较大时,增大基座侧板开孔率对促进基座内水体的交换更为有效。合理的底座开孔率不仅有助于基座内温水的直接稀释,从开孔进入基座的水流也可进一步加强基座底部湍流层涡团的卷吸作用,显著促进基座内的水体交换。
太阳能发电系统(Solar power system)是近年来能源研究的热点课题之一,陆上光伏具有安装灵活、维护方便的特点,近年来得到了较大的发展。但随着社会发展,用地紧缺成为制约光伏产业发展的主要矛盾。相较于陆上光伏,水上光伏可以最大限度的利用我国河川众多、水域面积大的特点,从而缓解陆上光伏面临的用地资源紧缺压
自2008年全球首个商业化水上光伏工程(20kWp)在美国落地
光伏板在光照条件下,其半导体与金属的连结部分会出现电位差,从而驱动电路中的电荷将太阳能转换为电能。目前光伏组件的光电转化效率大致为22%~25%,阳光中的其他部分能量则以热量形式耗散,这会导致光伏组件温度升
实验在新加坡南洋理工大学南洋水环境与水资源研究所环境过程模拟中心(EPMC)实验室的拖曳水槽中进行。主要采用平面激光诱导荧光(PLIF)方法获取基座单元内水体的空间分布。有关PLIF实验过程的详细说明,可参见文献[

图1 拖曳水槽示意图
Fig. 1 Schematic diagram of current flume
水上光伏基座的设计需有大承重、易于组装、耐久、低成本等特

图2 Ciel & Terre International设计的主副浮动模
Fig. 2 Main and auxiliary floating modules designed by Ciel & Terre Internationa

图3 三井建设(SMCC)设计的浮动平
Fig. 3 Floating platform designed by SMC

图4 新加坡HDB设计的主浮动模
Fig. 4 Main floating module designed by Singapore HD

图5 新加坡登格水库(Tengeh Reservoir)浮式光伏测试平
Fig. 5 Floating solar test platform in Tengeh Reservoir, Singapor
本文采用的实验模型基于由4个浮动模块组成的单元原型进行设计,浮动基座模型总共包含4个基座单元(

图6 浮式光伏发电平台模型
Fig. 6 Model of floating solar power generation platform

图7 四单元浮式基座示意(单位:mm)
Fig. 7 Diagram of floating base with four units (unit: mm)

图8 拖曳水槽中的物理模型
Fig. 8 Physical model in current flume
编号 | 简写 | 温差/℃ | 速度/ (mm· | 连通孔数/个 | 侧板开孔率/% |
---|---|---|---|---|---|
C1 | 2D-CURRENT1-0H | 2 | 20 | 0 | 0 |
C2 | 2D-CURRENT2-0H | 2 | 30 | 0 | 0 |
C3 | 2D-CURRENT3-0H | 2 | 50 | 0 | 0 |
C4 | 2D-CURRENT1-1H | 2 | 20 | 1 | 1.75 |
C5 | 2D-CURRENT2-1H | 2 | 30 | 1 | 1.75 |
C6 | 2D-CURRENT3-1H | 2 | 50 | 1 | 1.75 |
C7 | 2D-CURRENT1-2H | 2 | 20 | 2 | 3.50 |
C8 | 2D-CURRENT2-2H | 2 | 30 | 2 | 3.50 |
C9 | 2D-CURRENT3-2H | 2 | 50 | 2 | 3.50 |
C10 | 2D-CURRENT1-3H | 2 | 20 | 3 | 5.24 |
C11 | 2D-CURRENT2-3H | 2 | 30 | 3 | 5.24 |
C12 | 2D-CURRENT3-3H | 2 | 50 | 3 | 5.24 |
C13 | 4D-CURRENT1-0H | 4 | 20 | 0 | 0 |
C14 | 4D-CURRENT2-0H | 4 | 30 | 0 | 0 |
C15 | 4D-CURRENT3-0H | 4 | 50 | 0 | 0 |
C16 | 4D-CURRENT1-1H | 4 | 20 | 1 | 1.75 |
C17 | 4D-CURRENT2-1H | 4 | 30 | 1 | 1.75 |
C18 | 4D-CURRENT3-1H | 4 | 50 | 1 | 1.75 |
C19 | 4D-CURRENT1-2H | 4 | 20 | 2 | 3.50 |
C20 | 4D-CURRENT2-2H | 4 | 30 | 2 | 3.50 |
C21 | 4D-CURRENT3-2H | 4 | 50 | 2 | 3.50 |
C22 | 4D-CURRENT1-3H | 4 | 20 | 3 | 5.24 |
C23 | 4D-CURRENT2-3H | 4 | 30 | 3 | 5.24 |
C24 | 4D-CURRENT3-3H | 4 | 50 | 3 | 5.24 |
C25 | 7D-CURRENT1-0H | 7 | 20 | 0 | 0 |
C26 | 7D-CURRENT2-0H | 7 | 30 | 0 | 0 |
C27 | 7D-CURRENT3-0H | 7 | 50 | 0 | 0 |
C28 | 7D-CURRENT1-1H | 7 | 20 | 1 | 1.75 |
C29 | 7D-CURRENT2-1H | 7 | 30 | 1 | 1.75 |
C30 | 7D-CURRENT3-1H | 7 | 50 | 1 | 1.75 |
C31 | 7D-CURRENT1-2H | 7 | 20 | 2 | 3.50 |
C32 | 7D-CURRENT2-2H | 7 | 30 | 2 | 3.50 |
C33 | 7D-CURRENT3-2H | 7 | 50 | 2 | 3.50 |
C34 | 7D-CURRENT1-3H | 7 | 20 | 3 | 5.24 |
C35 | 7D-CURRENT2-3H | 7 | 30 | 3 | 5.24 |
C36 | 7D-CURRENT3-3H | 7 | 50 | 3 | 5.24 |

图9 2℃温差下不同水流流速和连通孔数下基座内温水的浓度衰减
Fig. 9 Concentration decay at different water flow velocities and open-pore exchange areas at a temperature difference of 2 °C

图10 4℃温差下不同水流流速和连通孔数下基座内温水的浓度衰减
Fig. 10 Concentration decay at different flow rates and open-pore exchange areas at a temperature difference of 4 °C

图11 7℃温差下不同水流流速和连通孔数下基座内温水的浓度衰减
Fig. 11 Concentration decay at different water flow rates and open-pore exchange areas at a temperature difference of 7 °C
图

图12 2℃温差下不同水流流速和连通孔数下最大扩散层
Fig. 12 Maximum diffusion layer at different water flow rates and open-pore exchange areas at a temperature difference of 2 °C

图13 4℃温差下不同水流流速和连通孔数下最大扩散层
Fig. 13 Maximum diffusion layer at different water flow velocities and open-pore exchange areas at a temperature difference of 4℃

图14 7℃温差下不同水流流速和连通孔数下最大扩散层
Fig. 14 Maximum diffusion layer at different water flow velocities and open-pore exchange areas at a temperature difference of 7 °C
为综合考虑各因素对光伏基座内水体交换的影响,采用量纲分析法对各因素的影响进行分析,根据测量结果,基座内温水的量纲为一浓度随时间衰减的一般方程可表示为
(1) |
式中:TR为水体滞留时间,即基座内水体中荧光剂的浓度c降至初始时荧光剂浓度c0的1/e所需的时间。根据影响基座水体交换的因素,滞留时间TR的可由
(2) |
式中:g为重力加速度;u为周边水流流速;为环境水的密度;为模块内部水和环境水之间的初始密度差。需要注意的是,表示由水体分层效应引起的量纲为一密度差,由于实验主要针对基座的纵截面开展,因此忽略了分层效益在横向上的影响。为基座特征长度,为基座单元内侧的宽度,为基座浸入周边水体的深度。使用g和L作为变量进行量纲分析,的表达式可进一步表示为
(3) |
由于本实验中所用基座尺度大小固定,因此和为固定值,因此
(4) |
式中:为常数。需要注意的是,由于实验是在无波浪影响下进行,因此公式仅适用于无波浪影响下纯水流、温差较小且基座尺度及入水深度固定的情况。为确定
对水上光伏基座在不同温差、流速和侧板开孔条件下的水体交换进行观测。探讨了基座内水体交换与连通面积、温差和流速的关系。结论如下:
(1)基座内的水体滞留量与时间呈负指数关系,对滞留时间影响从高到低依次为温差、流速、开孔连通面积。
(2)在较小的温差下,流速对基座内水体交换影响显著。而当温差较大时,流速对基座内水体交换影响有限,开孔率的影响则相对更为显著。因此,在光照较为强烈的地区,增大基座侧板开孔率是促进基座内水体交换的有效手段。
(3)在水流作用下,光伏基座下方湍流层的卷吸是促进基座内水体交换的主要动力。而合理的开孔设计可以加强湍流层涡团的卷吸作用。因此在光伏基座的设计中可针对当地的水流条件,对开孔率及开孔布局进行合理设置,最大限度提高基座内水体与周边水体的交换效率。
作者贡献声明
蒋茗韬:研究设计、实验及数据收集与分析,初稿撰写。
温梦丹:数据验证、论文修改与完善。
虞丹君:论文修改与优化。
刘修锦:数据分析与校对。
倪云林:整体协调、数据分析与优化。
参考文献
ZHANG M, SCHREIER S. Review of wave interaction with continuous flexible floating structures[J]. Ocean Engineering, 2022, 264: 112404. DOI: 10.1016/J.OCEANENG.2022.112404. [百度学术]
孙杰. 水上光伏电站应用技术与解决方案[J]. 太阳能,2017, 278(6): 32. DOI: 10.19911/j.1003-0417.2017.06.009. [百度学术]
SUN Jie. Application of technology and solutions to waterborne photovoltaic power stations[J]. Solar Energy, 2017, 278(6): 32. DOI: 10.19911/j.1003-0417.2017.06.009. [百度学术]
KUMAR V A, RASHMITHA M, NARESH B, et al. Performance analysis of different photovoltaic technologies[C]// International Conference on Advanced Electronic Systems (ICAES). Pilani: IEEE, 2013: 301-303. [百度学术]
耿宝磊, 唐旭, 金瑞佳. 海上浮式光伏结构及其水动力问题研究展望[J]. 海洋工程, 2024, 42(3): 190. [百度学术]
GENG Baolei, TANG Xu, JIN Ruijia. Outlook of research on offshore floating photovoltaic structures and their hydrodynamic problems[J]. The Ocean Engineering, 2024, 42(3): 190. [百度学术]
SHI W, YAN C, REN Z, et al. Review on the development of marine floating photovoltaic systems[J]. Ocean Engineering, 2023, 286: 115560. DOI: 10.1016/j.oceaneng.2023.115560. [百度学术]
YOUSUF H, KHOKHAR M Q, ZAHID M A, et al. A review on floating photovoltaic technology (FPVT)[J]. Current Photovoltaic Research, 2020, 8(3): 67. DOI: 10.21218/CPR.2020.8.3.067 [百度学术]
World Bank , Solar Energy Research Institute of Singapore (SERIS). Where sun meets water: floating solar market report [R]. Washington D C: World Bank, 2019. [百度学术]
GORJIAN S, SHARON H, EBADI H. Recent technical advancements, economics and environmental impacts of floating photovoltaic solar energy conversion systems[J]. Journal of Cleaner Production, 2021, 278: 124285. DOI: 10.1016/j.jclepro.2020.124285. [百度学术]
WANG J, LUND Peter D. Review of recent offshore photovoltaics development[J]. Energies, 2022, 15(20): 7462. DOI: 10.3390/en15207462. [百度学术]
HOOPER T, ARMSTRONG A, VLASWINKEL B. Environmental impacts and benefits of marine floating solar[J]. Solar Energy, 2021, 219: 11. DOI: 10.1016/j.solener.2020. 10.010. [百度学术]
GOSWAMI A, SADHU P K. Degradation analysis and the impacts on feasibility study of floating solar photovoltaic systems[J]. Sustainable Energy, Grids and Networks, 2021, 26: 100425. DOI: 10.1016/j.segan.2020.100425. [百度学术]
REFAAI M R A, DHANESH L, GANTHIA B P, et al. Design and implementation of a floating PV model to analyse the power generation[J]. International Journal of Photoenergy, 2022, 2022: 3891881. DOI: 10.1155/2022/3891881. [百度学术]
SHI Y, Wei Y, TAY Z Y, et al. Hydroelastic analysis of offshore floating photovoltaic based on frequency-domain model[J]. Ocean Engineering, 2023, 289: 116213. DOI: 10.1016/j.oceaneng.2023.116213 [百度学术]
DUBEY S, SARVAIYA J N, SESHADRI B. Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world-a review[J]. Energy Procedia, 2013, 33: 311. DOI: 10.1016/j.egypro.2013.05.072. [百度学术]
BELYAMIN B, FULAZZAKY M A. Influence of cooling water flow rate and temperature on the photovoltaic panel power[J]. Energy, Ecology and Environment, 2021, 30: 1. DOI: 10.1007/s40974-021-00223-4. [百度学术]
刘艳峰, 李荟婷, 王登甲, 等. 太阳能集热系统过热影响因素分析[J]. 太阳能学报, 2021, 42(3): 463. DOI: 10.19912/j.0254-0096.tynxb.2018-1189. [百度学术]
LIU Yanfeng, LI Huiting, WANG Dengjia, et al. Analysis of factors influencing overheating in solar thermal collection systems[J]. Acta Energie Solaris Sinica, 2021, 42(3): 463. DOI: 10.19912/j.0254-0096.tynxb.2018-1189. [百度学术]
宋子旭, 由世俊, 张欢, 等. 槽式太阳能新型腔式吸热器的热性能研究[J]. 太阳能学报, 2021, 42(3): 475. DOI: 10.19912/j.0254-0096.tynxb.zwh-yutou-02. [百度学术]
SONG Zixu, YOU Shijun, ZHANG Huan, et al. Thermal performance study of a new type of cavity absorber for trough solar energy systems[J]. Acta Energiae Solaris Sinica, 2021, 42(3): 475. DOI: 10.19912/j.0254-0096.tynxb.zwh-yutou-02. [百度学术]
CLAUS R, MARIO L. A methodology to assess the dynamic response and the structural performance of floating photovoltaic systems[J]. Solar Energy, 2023, 262: 111826. DOI: 10.1016/j.solener.2023.111826. [百度学术]
LAW A W K, WANG H. Measurement of mixing processes with combined digital particle image velocimetry and planar laser induced fluorescence[J]. Experimental Thermal and Fluid Science, 2000, 22(3): 213. DOI: 10.1016/S0894-1777(00)00029-7. [百度学术]
DAI J, ZHANG C, LIM H V, et al. Design and construction of floating modular photovoltaic system for water reservoirs[J]. Energy, 2020, 191: 116549. DOI: 10.1016/j.energy.2 019. 116549. [百度学术]
SREE D, LAW A W K, PANG D S C, et al. Fluid-structural analysis of modular floating solar farms under wave motion[J]. Solar Energy, 2022, 233: 161. DOI: 10.1016/j.solener. 2022.01.017. [百度学术]