文章编号: 0253-374X(2010)07-1074-05

DOI:10.3969/j.issn.0253-374x.2010.07.024

四气门汽油机工作过程的瞬态模拟计算

杜爱民,吴杰杰,段 亮 (同济大学汽车学院,上海 201804)

摘要:利用 AVL-Fire 软件,建立某汽油机的气道及缸内流 动区域在进气、压缩和做功行程的动态网格,并在此基础上 模拟计算三维数值,分析不同行程气道及缸内气体速度、湍 流动能、温度和压力的分布情况,获得更详细的流场信息,为 该汽油机的设计提供相关理论依据和参考.

关键词:汽油机;瞬态模拟;	动网格
中图分类号: U 270.2	文献标识码:A

Transient Simulation of Working Process for Four-valve Gasoline Engine

DU Aimin, WU Jiejie, DUAN Liang

(College of Automotive Studies, Tongji University, Shanghai 201804, China)

Abstract: Software AVL-Fire was used to create the dynamic meshes of intake port and cylinder flow area of gasoline engine, in the strokes of intake, compression and expansion. The three-dimensional numerical simulation calculation was processed, and through the analysis of the distribution of air velocity, turbulent kinetic energy, temperature and pressure under different valve strokes, a more detailed flow field information was obtained, which provides a theoretical basis and reference to the design of the gasoline engine.

Key words: gasoline engine; transient simulation; dynamic meshes

内燃机缸内气体流动在很大程度上影响着发动 机的动力性、经济性、燃烧噪声和有害废气的排放, 而进气过程中由进气道进入气缸的空气量、气体的 速度分布及其涡流和湍流状况等,对缸内气体流动 又有着直接影响^[1].因此,研究进气道流动特性,对 于提高发动机性能具有重要意义.目前,非结构化 CFD(计算流体力学)计算方法,可建立气道内气体 流动的数学模型,分析从气道到缸内的流动,进而为 气道的结构优化提供理论指导,以获得高的流量系 数和与燃烧系统相匹配的涡流比、滚流比,使气道达 到最好的流通特性^[2].其工作流程见图 1.

随着燃油喷射技术在汽油机领域的广泛应用,对 缸内气流运动的研究显得愈来愈重要,缸内气流运动 对汽油机油气混合和燃烧过程有重要影响,并进而影 响到发动机的性能和排放水平,而发动机气道的流动 特性在很大程度上决定缸内的气流运动状况.

1 瞬态模拟计算

1.1 几何模型及计算区域确定

该汽油机气道及缸内流动三维瞬态数值模拟的 计算区域选定为进、排气道和气缸三部分.进、排气 道部分分为气门座、气门体和气道体区域,气缸部分 分为燃烧室、缸壁和活塞顶.发动机参数见表1.

收稿日期: 2009-04-17

作者简介: 杜爱民(1971—),男,副教授,工学博士,主要研究方向为发动机结构设计. E-mail: duaimin1971@yahoo.com.cn

表1 发动机参数

Tab.1 Engine parameters		
参数	参数值	
	2.4	
气缸直径/mm	88.6	
活塞行程/mm	96.4	
压缩比	10:1	
额定功率/[kW/(r • min ⁻¹)]	118/5 700	
最大转矩/[(N・m)/(r・min ⁻¹)]	$222/(4\ 000{\sim}4\ 200)$	
点火顺序	1→3→4→2	
进/排气门最大升程/mm	10.3/9.0	
每缸气门数	2进2排	

注:发动机形式为 IL4、水冷、多点电喷.

1.2 动网格划分

包括进、排气道以及缸内气流部分的 321°~1040°CA(曲柄转角)移动网格的具体生成步骤如下:

(1) 最坏位置的定网格划分

建立移动网格之前,利用几何模型划分定网格. 划分定网格的目的在于确定最坏位置的网格尺寸. 定网格划分成功之后,移动网格的划分需要参考定 网格局部位置的最小网格尺寸进行,否则,反复划分 动网格以找到合适的网格尺寸,是费时又费力的.

(2) 动网格自动划分^[3]

瞬态计算需要将发动机在 321°~1 061°CA 范围 内的连续移动网格划分出来才能进行.

利用 AVL Fire 中的 FEP 模块划分移动网格,根 据气门是否开启,分别建立进、排气门开启时刻与闭 合时刻的四种计算模型:进气门开启,排气门关闭; 进气门开启,排气门开启;进气门关闭,排气门开启; 进气门关闭,排气门关闭.导入定网格划分产生的 fip 文件以及相关运行参数,在划分网格的过程中, 要用到发动机的一系列相关的运行参数:气缸直径、 行程、连杆长度、活塞间隙,进、排气门升程曲线,以 及气门轴线和气缸轴线的夹角等.

1.3 数学模型及边界条件

瞬态模拟实际是多次稳态模拟的叠加,即上一步模拟的稳定结果形成下一步模拟的边界条件,同时计算网格也自动增加或减少.本次瞬态模拟采用与稳态模拟相同的湍流模型,利用有限体积的计算方法.借助 Boost 软件,完成该汽油机的热力循环计算,获取三维数值模拟的瞬态边界条件.例如,进口流量系数、进口温度、出口压力,都以 dat 文件格式导入 Fire 中.其他边界条件的设置见表 2.

表 2 边界条件 Tab.2 Boundary conditions

边界范围	设定温度/K	边界类型
燃烧室	450	固定壁面
进气门	300	移动壁面
排气门	560	移动壁面
活塞顶	450	移动壁面
缸壁	450	固定壁面
进气道	300	固定壁面
排气道	560	固定壁面
进气门座	300	固定壁面
排气门座	560	固定壁面

1.4 数值计算

湍流模型采用 k—ε 双方程模型,选择有限体积 法对控制方程离散求解,压力—速度耦合计算采用 SIMPLE 方法.加载了燃烧模型,为了真实模拟进气 道喷射混合气,将进气混和气作为均质混和气,当量 比设置为1.14.

计算过程为上止点 360°CA,计算起始角度为 360°CA,计算线止角度为 860°CA,计算结束时刻为 排气门打开之前.计算工况转速为 5 700 r • min⁻¹, 点火提前角为 14°CA. 点火之后,缸内混合气剧烈燃烧,缸内压力急剧上升.

图 2 整体网格透视 Fig.2 Perspective of global grids

2 三维流场特性分析

2.1 进气行程

图 3 所示为进气行程速度场分布.进气行程开 始初期,气门开度较小,气缸容积不大,气门的截流 作用使得在 375°CA 时的气体流速最大只有 33 m•s⁻¹,并未在缸内形成较大的流动;活塞继续下行 到 390°CA 时,气缸内的容积增大,缸内产生负压,使 进气的流速加快,由于壁面的阻碍作用,流入缸内的 气流在进气门附近形成若干个滚动的涡,尤其在进 气门下方,滚流的雏形已经开始形成;在 450°CA,由 于气门升程较大,气门处截流作用影响很小,进气道 内的流线较为光顺,也没有行程涡阻碍进气流动,进 气流速较高.此后,活塞继续下行,造成活塞表面附 近的气流运动向下,但进气的流速大,惯量也大,加 上壁面阻力的作用,形成一个大涡和几个小涡.在进 气门关闭过程中,气缸内的滚流现象依然存在.

stroke(unit:m • s⁻¹)

图 4 所示为进气过程横截面速度场分布. 从横截面流线分布可以看出,在 375°CA 时刻,由于缸内的容积较小,并未形成明显的双涡流结构,矢量图表

明,进气初期的气流受到活塞顶的阻碍,大多数气体 朝向缸壁流动.从400°CA时的矢量图可以看出,随 着活塞下移,双涡流结构开始形成.到450°CA和 500°CA时,则更加明显.

2.2 压缩行程

图 5 所示为压缩行程速度场矢量分布.由图可 见,进气门关闭之后,气缸进入完全压缩阶段.在进 气门关闭后的压缩过程中,气缸变为一个封闭区域, 没有扰动气流从外部流入,缸内的小涡有所衰减,在 整个气缸内形成较大涡流运动.

随着活塞的不断上移,速度基本趋于平稳下降; 缸内的横向大涡逐渐减弱,并随着活塞到达气缸顶 部而逐步消散.

从图 6 可见,随着压缩过程的进行,缸内湍流 动能呈现先减小后增大再减小的趋势.具体来说, 在压缩过程初期,一方面由于已是进气的尾期,气 体带入缸内的湍流能量越来越小,另一方面由于存 在气体的自搅拌以及摩擦等原因,气体湍动能不断 被耗散.以上两方面原因的综合,使得缸内气体的 湍流动能一直在减小;在压缩过程后期,由于挤流 的出现,缸内气体湍动能又逐渐增大,上止点前 160°CA左右,湍动能达到峰值;上止点前 100°CA 以后,由于挤流的迅速衰减,缸内气体的湍流动能 也迅速下降.

Fig. 6 Turbulence engery distribution of compression stroke(unit; $m^2 \cdot s^{-2}$)

2.3 做功行程

图 7 所示为做功行程速度场分布.从图中可以 看出,在做功行程初期(以 720°CA 和 740°CA 时刻为 例)缸内流体的速度分布不均匀,比较紊乱.随着活 塞的下移,缸内的速度分布受活塞下移的带动,活塞 顶部气流速度明显较高,靠近缸壁的流体速度与中 间位置相比,有所降低.这是由气流与壁面之间的 摩擦作用所造成的.整体流动比较平稳,没有漩涡形

成.从 790°CA 与 860°CA 时刻的矢量图可见,做功行 程的大部分时间,缸内没有产生涡流现象.

图 8 所示为做功行程湍流动能分布.由图可见, 湍流动能的分布总体呈下降趋势,在 720°CA 最大湍 流动能为 135.96 m² • s⁻²,到 860°CA 时刻为 27 m² • s⁻²,湍流动能主要分布在气缸中心,尤其在上 止点附近,火花塞周围的湍动能较高,有利于火焰的 传播,燃油混合气的燃烧.

图 9 所示为做功行程的温度分布.由图可见,随

图 8 做功行程湍流动能分布(单位:m² · s⁻²) Fig. 8 Turbulence engery distribution of power

stroke(unit: $m^2 \cdot s^{-2}$)

Fig. 9 Temperature distribution of power stroke(unit:K)

着火焰不断扩散,可燃混合气迅速燃烧使缸内温度达 到最高点;火焰周围的温度急剧上升,火焰迅速蔓延, 向燃烧室周围扩散,以至于缸内温度由燃烧室中心区 域向周围逐渐降低;到790°CA之后,温差不很明显.

图 10 所示为做功行程压力场分布.由图可见, 随着活塞下移,气体容积增大,在做功行程初期,压 力分布不均匀(见 720°CA 和 740°CA 时刻的压力分 布云图).这是因为期间伴随着油气的燃烧过程,火 花塞的偏置导致缸内燃油混合气燃烧的火核分布不 均匀,以至于缸内压力有明显的侧偏(见图 10b 的 790°CA时刻的压力分布).

图 10 做功行程压力分布(单位:kPa) Fig.10 Pressure distribution of power stroke(unit:kPa)

3 结论

(1) 进气过程初期,受到气门与活塞运动的影

响,缸内气流运动较紊乱,没有形成明显的滚流或涡 流运动;中期,逐渐形成多个范围较小涡流明显的滚 流运动;后期,大尺度的滚流形成并且稳定下来.

(2) 压缩过程初期,在保持进气滚流的同时,活 塞顶附近产生一些小涡流;随着活塞的上移,滚流受 到挤压,形成两个尺度相对较小的滚流,最后终于破 碎.压缩行程的缸内湍流动能呈现先减小后增大再 减小的趋势,火花塞附近的湍动能较高,这样有利于 燃烧.

(3)除了做功初期之外,做功行程的其他时间 段缸内各方面特性都较均匀,包括缸内压力、温度、 湍动能,并且基本都呈下降趋势.

参考文献:

- 周龙保.内燃机学[M].北京:机械工业出版社,1998.
 ZHOU Longbao. Internal combustion engine[M]. Beijing: China Machine Press, 1998.
- [2] 刘德新,李丹,冯洪庆,等.四气门汽油机进气道气流运动的三 维数值模拟研究[J].内燃机工程,2006,27(2):36.
 LIU Dexin, LI Dan, FENG Hongqing, et al. Study of threedimensional numerical simulation for air flows in intake port of four-valve gasoline engine [J]. Chinese Internal Combustion Engine Engineering,2006,27(2):36.
- [3] 段亮.四气门汽油机气道及缸内气体流动数值模拟[D].上海: 同济大学汽车学院,2009.
 DUAN Liang. Numerical simulation for air flow in port and

cylinder of four-valve gasoline engine [D]. Shanghai: Tongji University. College of Automotive Studies, 2009.

【4】 杜爱民,段亮,田永祥.四气门汽油机进气道流动特性的 CFD 分析[J].同济大学学报:自然科学版,2009,37(2):249.
 DU Aimin, DUAN Liang, TIAN Yongxiang. CFD analysis of intake port flow characteristics for four-valve gasoline engine [J].
 Journal of Tongji University: Natural Science, 2009,37(2):249.