第 39 卷第 10 期 2011 年 10 月

文章编号: 0253-374X(2011)10-1473-06

DOI:10.3969/j.issn.0253-374x.2011.10.011

分路段交通状态模式元胞传递模型

弓晋丽1,2,杨东援1,彭贤武3

(1.同济大学 交通运输工程学院,上海 201804; 2.长沙理工大学 交通运输工程学院,湖南 长沙 410114;3.三一重工股份有限公司,湖南 长沙 410100)

摘要:对城市快速路元胞传递(CTM)模型进行了研究.根据 不同路段交通状态模式下,路段交通流动态特性的"可观测 性"会由于交通信息传播方式差异而不同,提出了城市快速 路分模式元胞传递模型.该模型更新了流量传输模型,将其 表示为不同路段交通状态模式下的分段函数形式,并针对城 市快速路构建了下匝道流量传输模型.以上海南北高架部分 路段实际检测数据为例,测试比较了3种宏观元胞自动机模 型,结论为分模式 CTM 模型性能最好.在将其应用于大规模 数据测试时,密度估计结果平均百分比误差为 20%左右,流 量估计结果平均百分比误差为 10%左右,仿真效果比较 理想.

关键词:城市快速路;检测线圈数据;路段交通状态模式; 元胞传递模型

中图分类号: U 491.112 文献标识码: A

Cell Transmission Model Under Different Patterns of Road Traffic State

GONG Jinli^{1,2}, YANG Dongman¹, PENG Xianwu³

(1. College of Transportation Engineering, Tongji University, Shanghai 201804, China; 2. School of Transportation Engineering, Changsha University of Science & Technology, Changsha 410114, China; 3. Sany Heavy Industry Co. Ltd., Changsha 410100, China)

Abstract: A research was made of the cell transmission models on city expressway. The Pattern cell transmission model (CTM) was proposed based on that the observability of traffic flows' dynamic characteristic appeared to be different according the transmission methods of traffic information under different patterns of road traffic state. In Pattern CTM cell transmission model, the flow transmission model on mainroad was updated to be expressed as the form of piecewise function and the flow transmission model on off-ramp was constructed against the city expressway. Taking the real data on Shanghai North – South Expressway as example, the performance of three CTMs were compared. The result shows that the Pattern CTM is the best of all. When the Pattern CTM is applied in large scales, the mean percent error (MPE) of density is around 20% and the MPE of flow is around 10%, which show that the simulation result is satisfactory.

Key words: city expressway; loop detector data; patterns of road traffic state; cell transmission model

由城市快速路上布置的大量固定检测线圈检测 到的数据可为交通流分析提供大量可靠的信息,但 由于固定检测线圈只能获得断面交通参数数据,无 法得到路段交通参数数据,因此无法直接将其应用 于路段交通流运行状况分析中.为此,近年来国内外 许多研究者提出了多种交通流模型,旨在模拟交通 状态演变过程,用于路段交通流参数估计.其中,由 Daganzo 于 1993 年提出^[1] 的元胞传递模型(cell transmission model, CTM)能够再现许多重要的交通 现象(如"冲击波"行为和拥挤波的向后传播等),具 有易于理解的优点,因此得到了广泛的应用.但 Daganzo 最初提出的 CTM 模型存在一定的缺陷:它 将道路等分为等长的路段,限制了 CTM 模型在实际 交通中的应用. Muñoz^[2]提出了改进的 CTM 模型 (modified cell transmission model, MCTM),实现了 道路非等长划分,增加了 CTM 模型的适用性. 随后, Sun^[3]根据元胞拓扑衔接方式的不同,提出了城市快 速路上下匝道流量传输模型.接着,Gomes等^[4]提出 非对称的 CTM 模型(asymmetric cell transmission model,ACTM),用于进行匝道控制策略的优化比选.

本文在对交通流动态特性的"可观测性"在不同 路段交通状态下差异性分析的基础上,提出了城市 快速路分模式 CTM 模型.该模型以固定检测线圈为

收稿日期:2010-06-23

基金项目:国家"八六三"高技术研究发展计划(2007AA12Z242);国家自然科学基金(50738004)

第一作者:弓晋丽(1983—),女,讲师,工学博士,主要研究方向为交通运输规划与管理以及交通信息.E-mail;gjl2001cd@126.com

通讯作者:杨东援(1953一),男,教授,博士生导师,工学博士,主要研究方向为交通运输规划与管理交通信息.E-mail:yangdyk@yahoo.com.cn

信息来源,更新了流量传输模型,将其表示为不同路 段交通状态模式下的分段函数形式,并针对城市快 速路新构建了下匝道流量传输模型.

1 分模式 CTM 模型构建

1.1 路段交通状态模式的划分

本文采用模糊 C-均值聚类算法^[5-7],将检测线 圈断面交通状态根据流量一占有率关系分为畅通状 态和拥挤状态(图1).其中,畅通状态是指速度较大 而占有率较低所对应的状态(图1中圆圈所标注的 部分);拥挤状态指速度较小而占有率较高所对应的 状态(图1中十字符号所标注的部分).

图 1 交通定性状态模糊 C-均值聚类

Fig.1 Fuzzy C-means for traffic qualified state 在得到检测线圈断面的交通定性状态后,为判 别路段交通状态模式,特提出以下假设:①如果路段 上下游检测线圈断面交通状态一致,则认为路段交 通状态单一且与检测线圈断面状态保持一致;②如 果路段上下游检测线圈断面交通状态不一致,则假 设路段内最多存在一处状态转换区域(由于城市快 速路检测线圈布置比较密集,因此忽略上下游检测 线圈无法检测到的路段内小范围的拥挤).据此,将 路段交通状态模式划分为4种模式:上游畅通-下游 畅通(G₁);上游拥挤-下游拥挤(G₂);上游拥挤-下游 畅通(G₃);上游畅通-下游拥挤(G₂);上游拥挤-下游 畅通(G₃);上游畅通-下游拥挤(G₂);上游机挤-下游

表 1 分模式路段"可观测性" Tab.1 The road 'obersevability' under different patterns

			· ·
模式分类	断面交	通状态	
	上游线圈	下游线圈	路段"可观测性"
G1	畅通	畅通	下游检测线圈
G_2	拥挤	拥挤	上游检测线圈
G_3	拥挤	畅通	上游检测线圈
G_4	畅通	拥挤	上游检测线圈和下游检测线圈

1.2 模型的构建

分模式 CTM 模型主体包括 4 部分:车流量守恒 方程,主线流量传输模型,上匝道流量传输模型,下 匝道流量传输模型.为实现元胞划分长度各不相同, 模型采用密度作为路段交通状态指标,代替元胞内 车辆数变量.元胞划分如图 2 所示.图中,q 表示交 通流量,r 表示上匝道流量,f 表示下匝道流量,ρ 表 示交通密度,d 表示上匝道交通需求量,a 表示下匝 道交通需求量.

Fig.2 Scheme for cell partitioning

1.2.1 车流量守恒方程

$$\rho_{i}(k+1) = \rho_{i}(k) + \frac{T_{s}}{\Delta x_{i}}(q_{i}(k+1) + r_{i}(k+1) - q_{i+1}(k+1) - f_{i}(k+1)), \quad i = 1, \dots, N \quad (1)$$

式中: T_s 表示采样周期(时间间隔); $\rho_i(k+1)$ 表示 第k+1个采样间隔 $T_s[k,k+1)$ 内元胞i的密度; $q_i(k+1)$ 表示k+1时间间隔内从元胞i-1流入 元胞i的流量; $r_i(k+1)$ 表示k+1时间间隔内由 元胞i所含上匝道进入主线元胞i流量; $f_i(k+1)$ 表示k+1时间间隔内由元胞i所含下匝道离开主 线元胞i流量; Δx_i 表示元胞长度.

1.2.2 主线流量传输模型

考虑上下匝道与主线间相互影响,引入上匝道 流量融合因子 γ 和下匝道流量分离因子λ 修复主线 密度

$$\hat{\rho}_{i}(k) = \rho_{i}(k) + \gamma_{i}(k+1)r_{i}(k+1)\frac{T_{s}}{\Delta x_{i}} + \lambda_{i}(k+1)f_{i}(k+1)\frac{T_{s}}{\Delta x_{i}}$$
(2)

式中: $\gamma_i \in [0,1]$ 表示元胞 *i* 中上匝道流量融合因 子,意指车辆从上匝道元胞被容许进入主线元胞 *i* 的最大比例; $\lambda_i \in [0,1]$ 表示元胞 *i* 中下匝道流量分 离因子,取 0 值时表明元胞 *i* 中不存在下匝道.

流量传输模型为

$$q_{i}(k + 1) = \begin{cases} S_{d i-1}(k + 1), G_{1} \notin \mathfrak{A} \\ R_{u i}(k + 1), G_{2} \approx \mathfrak{A} G_{3} \notin \mathfrak{A} \\ \min(S_{d i-1}(k + 1), R_{u i}(k + 1)), G_{4} \notin \mathfrak{A} \end{cases}$$
(3)

式中: $S_{d_{i-1}}(k+1)$ 表示 k+1时间间隔内由元胞

i-1所在路段下游检测线圈信息标定得到的元胞 i-1产生流量; $R_{ui}(k+1)$ 表示 k+1时间间隔内由 元胞 i 所在路段上游检测线圈信息标定得到的元胞 i 吸引流量.

式(3)中 $S_{d_{i-1}}(k+1)$ 和 $R_{u_i}(k+1)$ 分别由下 式计算:

$$S_{d i-1}(k + 1) = \min(v_{d i-1} \hat{\rho}_{i-1}(k), Q_{M,d i-1})(4)$$

$$R_{u i}(k + 1) = \min(Q_{M,u i}, \omega_{u i}(\rho_{J,u i} -$$

$$\hat{\rho}_i(k)) \frac{T_s}{\Delta x_i} \tag{5}$$

式中: $Q_{M,di-1}$ 表示由元胞 i = 1所在路段下游线圈 检测信息标定得到的元胞 i = 1最大通行能力; v_{di-1} 表示与 $Q_{M,di-1}$ 标定方式一致时元胞 i = 1自 由流速度; $Q_{M,ui}$ 表示由元胞i所在路段上游线圈检 测信息标定得到的元胞i最大通行能力; ω_{ui} 和 $\rho_{J,ui}$ 分别表示由元胞i所在路段上游线圈检测信息标定 得到的元胞i拥挤波动传播速度和阻塞密度.

主线流量传输模型反映了不同路段交通状态模 式下,交通信息"可观测性"的不同: G_1 模式下元胞*i* 所在路段处于畅通状态,元胞流量 q_i 由下游检测线 圈信息标定,等于元胞 *i* – 1 产生流量; G_2 和 G_3 模 式下元胞*i*所在路段存在拥挤,元胞流量 q_i 由上游 检测线圈信息标定,等于元胞*i*吸引流量; G_4 模式 时与以往 CTM 模型保持一致,为元胞*i* – 1 所提供 流量和元胞*i*可接受流量的最小值.

1.2.3 上匝道流量传输模型

$$r_{i}(k+1) = \min\left\{ d_{i}(k+1) + \frac{l_{ri}(k+1)}{T_{s}}, \\ \xi_{i}(\rho_{J,i} - \rho_{i}(k)) \frac{\Delta x_{i}}{T_{s}}, R_{M,i} \right\}$$
(6)

式中: $R_{M,i}$ 为上匝道通行能力; $l_{ri}(k)$ 为上匝道排队 车辆数; $d_i(k)$ 为上匝道交通需求量; ξ_i 为元胞i所 含上匝道流量分配因子,反映主线元胞i容量对所 含上匝道车流量的制约作用.上匝道排队车辆数传 输模型为

$$l_{ri}(k+1) = \max\{l_{ri}(k) + (d_i(k+1) - r_i(k+1))T_{ij}(k)\}$$
(7)

1.2.4 下匝道流量传输模型

$$f_{i}(k+1) = \min\left\{a_{i}(k+1) + \frac{l_{fi}(k+1)}{T_{s}}, \psi_{i}\rho_{i}(k) \frac{\Delta x_{i}}{T_{s}}, F_{\mathrm{M},i}\right\}$$
(8)

式中: $F_{M,i}$ 为下匝道通行能力; $l_{ii}(k)$ 为下匝道排队 车辆数; $a_i(k)$ 为下匝道交通需求量; ϕ_i 为元胞i所 含下匝道流量分配因子,反映主线元胞 *i* 最多能够 为下匝道提供的流量比例.下匝道滞留车辆数传输 模型为

$$l_{f_i}(k+1) = \max\{l_{f_i}(k) + (f_i(k+1) - a_i(k+1))T_s, 0\}$$
(9)

2 模型参数标定

模型在运算前,应先基于修复后的检测线圈数 据^[8]对模型参数进行标定,其所需标定参数包括基 本图参数,匝道参数及模型控制变量等.

2.1 基本图参数

为实现基本图标定,需先将检测得到的交通量、 时间平均速度和占有率转换为空间平均速度和密 度^[9-10].根据流密速关系,得到密度的估算式为

$$\rho = \frac{q}{\bar{v}_{+}}(1 + C^{2}) \tag{10}$$

式中:q为车流量; v_t 为平均速度;C为速度变异系数.

假设模型中基本图形满足三角形形状,则基本 图参数自由流速度 v_i 、拥挤波速 ω 、通行能力 Q_M 和 阻塞密度 ρ_J 的标定方法为:①采用交通状态分类器 对线圈数据样本进行交通状态判别;②通行能力 Q_M 的标定,取样本数据中流量最大值为通行能力 Q_M 的标定值;③自由流速度 v_f 的标定,使用最小二乘 法拟合自由流样本集内密度一流量函数关系,用函 数斜率值估计自由流速度;④拥挤波速 ω 的标定,以 v_f 除以某固定比值得到拥挤波速(Wei-Hua Lin 使 用 1993 年美国加州 I-880 公路数据对 CTM 中 v_f/ω *w* 进行了比选测试,结论认为当两者之比位于[2,6] 之间时模型仿真结果较理想^[11]);⑤计算分界密度 ρ_m 与阻塞密度 $\rho_J, \rho_m = Q_M/v_f, \rho_J = \rho_m + Q_M/\omega$.分 模式 CTM 模型三角形基本图见图 3.

图 3 分模式 CTM 模型三角形基本图 Fig.3 The triangle fundamental graph for pattern CTM

2.2 上下匝道参数

上匝道流量分配因子 $\xi_i(k)$ 由 k 时间间隔内元

胞i所在路段上游检测线圈流量 $q_{ui}(k)$ 、下游检测 线圈流量 $q_{di}(k)$ 和上匝道检测线圈流量 $\hat{r}_i(k)$ 标 定,其计算式为

 $\xi_{i}(k) = (q_{di}(k) - q_{ui}(k))/\hat{r}_{i}(k) \quad (11)$

上匝道流量融合因子 $\gamma_i(k)$ 使用 k 时间间隔内 元胞i 所在路段上游线圈检测流量 $q_{ui}(k)$ 和匝道检 测数据 $\hat{r}_i(k)$ 标定,其计算式为

 $\gamma_i(k) = \hat{r}_i(k)/(q_{ui}(k) + \hat{r}_i(k))$ (12) 下匝道流量分配因子 $\psi_i(k)$ 使用 k 时间间隔内 元胞 i 所在路段上游线圈检测流量 $q_{ui}(k)$ 、下游线 圈检测流量 $q_{di}(k)$ 和下匝道检测流量 $\hat{f}_i(k)$ 标定, 其计算式为

 $\lambda_i(k) = \hat{f}_i(k)/(q_{d\,i}(k) + \hat{f}_i(k))$ (14) 元胞 i 所含上匝道交通产生需求量 d_i 和下匝 道交通吸引需求量 a_i 可分别由相应上下匝道检测 线圈流量标定.上匝道通行能力 $R_{M,i}$ 取相应上匝道 流量检测数据的最大值,下匝道通行能力 $F_{M,i}$ 取相 应下匝道流量检测数据的最大值.

2.3 其他模型参数

初始密度是指模型开始运算前各个元胞的密度 ρ_i(0).模型运算中以初始时间段内密度估算值作为 初始密度的近似值.路段输入流量使用路段最上游 线圈检测流量标定;设路段共划分为 N 个元胞,则 输出流量使用第 N 个元胞所在路段的下游线圈检 测流量标定.上述方法为一般性建议,实际使用中需 根据具体数据进一步调整分析.

3 实证分析

城市快速路元胞划分需遵循以下原则^[12-14]: ①单个元胞所含上匝道数量不超过1个,且如果元 胞内包含上匝道,则上匝道一定位于元胞的开始位 置;②单个元胞包含的下匝道数量不超过1个,且 如果元胞内包含下匝道,则下匝道一定位于元胞的 结束位置;③单个元胞包含的检测线圈数量不超过 1个;④单个元胞车道数一致.意即道路车道数增 加或减少位置需断开,划分为不同元胞;⑤为加快 模型运算速度,同时保证采样时间间隔 T_s 满足 $T_s \leq i = \min_{i=1,\dots,N} (\Delta x_i / v_{f,i})$ 条件,元胞长度 Δx_i 尽量 取较大值.

3.1 模型性能比较

为对 MCTM 模型、ACTM 模型和分模式 CTM 模型性能进行比较,本文选取上海南北高架东侧 DX02—DX05 间共1302 m 长的路段作为测试路段 (图 4).根据以上原则将其划分为5个元胞,c1—c5 元胞长度分别为249,173,466,158 和276 m.

图 4 上海南北高架部分路段元胞划分示意图 Fig.4 Scheme for parts of Shanghai North-South Expressway

仿真步长的设定将影响运算的次数和运算的时 间.如文献[1]中所描述,CTM 模型假定仿真步长 $T_m满足 T_m \leqslant \min_{i=1,...,N} (\Delta x_i / v_{f,i})$ 条件,因此本文以 $\min_{i=1,...,N} (\Delta x_i / v_{f,i})$ 做为仿真步长.使用 Matlab 编程 分别对 MCTM,ACTM 和分模式 CTM 模型进行仿真 运算,仿真时段选取 2009 年 3 月 20 日上午6:00~ 12:00(观察表明该时间段内无交通事故发生,但有 多次拥挤发生).将该时间段内 DX02 和 DX05 检测 线圈数据以及徐家汇下匝道和徐家汇上匝道处的检 测线圈数据作为输入,使用各个模型对路段交通参 数进行估算.定义序列{ y_i }的平均百分比误差 E_{mpe} 描述仿真结果{ \hat{y}_i }与真实值{ y_i }的偏差,其计算公 式为

$$E_{\rm mpe} = \frac{1}{M} \sum_{k=1}^{M} \left| \frac{y_i(k) - \hat{y}_i(k)}{y_i(k)} \right|$$
(15)

运算结果显示:cl 仿真结果与DX02 测定值比较, 密度平均百分比误差为15.81%,流量平均百分比误 差为7.36%,速度平均百分比误差为15.47%.如表2 所示,模型对比显示表明,分模式 CTM 模型密度和速 度的 *E*_{mpe}均小于平均值,分模式 CTM 模型结果较优. 根据分模式 CTM 模型的仿真结果得到的交通状态和 测量数据得到的交通定性状态对比如图 5 所示.图 中,浅色部分表示畅通状态,深色部分表示拥挤状态. 可以看到,仿真结果与实际道路状态基本保持一致, 表明分模式 CTM 模型能很好地模拟现实情况.

Fig.5 Comparison between actual detected traffic state against simulation result

3.2 大规模路段检测数据验证分析

第10期

选取上海南北高架东侧 DX01—DX19 间路段为 大规模验算实例,将其划分成30个元胞,元胞平均长 度为0.261 km(图 6).图中刻度上数字表示各个元胞 长度;灰色位置用于标示检测线圈所在位置;各元胞 上所标白色数字表示元胞编号.以 2009 年 3 月 20 日 至 29 日连续 10 d 的线圈数据为例, 10 d 中包括 6 个 工作日和4个周末.

为进行分模式 CTM 模型的仿真运算,首先用上 文中模型参数标定方法,基于10d内检测线圈数据对 各路段上下游基本图参数进行标定,使用同样的数据 建立分模式 CTM 模型进行仿真,可获得 30 个元胞的 密度、空间平均速度及流量.如表3所示,10d模型运 算结果与检测线圈测量值的平均百分比误差计算结 果表明,密度估算结果误差为20%左右,流量估计结 果误差为10%左右,表明仿真效果较理想.速度误差 偏大主要原因在于 CTM 模型基本假设认为自由流阶 段速度等于定值,与实际测量结果表明自由流阶段速 度具有随机性存在差异[15].

	表 2	交通参数仿真结果与测量值的平均百分比误差比较
2	MPE of	actual detected traffic parameters against simulation

	Та	b.2 MPE of a	actual detect	ed traffic	parameters a	gainst sin	ulation result	5	%
模型	c1 与 DX02 比较			c3 与 DX03 比较			c4 与 DX04 比较		
	密度	流量	速度	密度	流量	速度	密度	流量	速度
МСТМ	16.49	6.55	17.60	22.17	6.30	22.44	19.84	11.09	31.47
ACTM	16.49	6.55	17.60	30.89	11.87	25.10	19.84	11.09	31.47
分模式 CTM	[14.46	8.99	11.22	25.96	10.48	22.43	27.20	11.95	29.88
平均值	15.81	7.36	15.47	26.34	9.55	23.32	22.29	11.38	30.94
	422 DX01 I	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	446 158 DX04	276 DX05	425 303 DX06 78	139 230 DX07 910	175 411 DX08 DX 11 12	} 09 ∎	

图 6 上海南北高架东侧元胞划分示意图(单位:m)

Fig.6 Scheme for cell partition on eastern side of Shanghai North-South Expressway

Tab.3	MPE of	simulation	result	against	actual
-------	--------	------------	--------	---------	--------

detected data % 日期 星期 密度 流量 速度 3-20 周五 27.70 13.29 38.55 21.96 6.12 3 - 21周六 35.61 3 - 22周日 16.815.4739.043 - 23周一 28.5511.0538.11 3 - 24周二 27.83 8.79 36.13 3 - 25周三 29.8511.5536.70 周四 39.57 3 - 2621.2441.41 3-27 周五 29.46 14.42 39.21 37.28 3 - 28周六 24.937.20 3 - 29周日 16.22 4.97 38.61

结论 4

本文对城市快速路宏观 CTM 模型进行了研究. 该模型基于定点检测线圈数据,实现了城市快速路 交通状态演变过程的模拟和路段交通参数的估计.

在采用模糊 C-均值聚类算法,将路段上下游检 测线圈断面交通状态根据流量—占有率关系分为畅 通状态和拥挤状态后,将路段交通状态模式划分为4 种模式.根据不同路段交通状态模式下交通流信息 "可观测性"不同提出了分模式 CTM 模型,该模型将 流量传输模型表示为不同路段交通状态模式下的分 段函数形式;并新构建了城市快速路下匝道流量传 输模型.最后,使用 MATLAB 编程对南北高架东侧 DX02—DX05 间共1 302 m 长的路段进行了实例测 试.结果表明,与 MCTM 和 ACTM 比较,由分模式 CTM 模型计算获得的密度和速度的平均百分比误 差均小于平均值,能较好地模拟现实情况.为实现分 模式 CTM 模型在大规模数据集上的应用,本文以上 海南北高架东侧 DX01—DX19 路段为例,使用 10 检 测数据进行了仿真运算.结果表明,密度估算结果平 均百分比误差为 20%左右,流量估算结果平均百分 比误差为 10%左右,仿真效果较理想.

参考文献:

- [1] Daganzo C F. The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory [J]. Transportation Research Part B: Methodological, 1994, 28(4); 269.
- [2] LAURA Matiana Muñoz. Macroscopic modeling and identification of freeway traffic flow[D]. Berkeley: University of California, 2004.
- [3] SUN Xiaotian. Modeling, estimation, and control of freeway traffic flow[D]. Berkeley: University of California, 2005.
- [4] Gomes G.Hhrowitz R. Optimal freeway ramp metering using the asymmetric cell transmission model [J]. Transportation Research:Part C.2006,14(4):244.
- [5] 孙亚,钱洪波,叶亮.数据挖掘算法在交通状态量化及识别的应用[J].计算机应用,2008,28(3):738.
 SUN Ya,QIAN Hongbo,YE Liang. Application of data mining in traffic state quantification and recognition [J]. Computer Application,2008,28(3):738.
- [6] 王辉,王孝坤,王权.一种交通流状态智能推理系统[J].系统 工程,2007,25(12):7.
 WANG Hui, WANG Xiaokun, WANG Quan. An intelligent

(上接第1440页)

- [33] Holmes J D, Ginger J D. Codification of internal pressures for building design [C] // Proceedings of the 7th Asia Pacific Conference on Wind Engineering. Taipei: Tamkang University. Wind Engineering Research Center, 2009.
- Standards Australia/ Standards New Zealand. AS/NZS1170.
 2-2002 Structural design actions part 2: wind actions [S].
 Sydney:Standard Australia,2002.
- [35] International Organization for Standardization. ISO 4 354:2009
 (E) International standard: Wind actions on structures [S]. Switzerland: ISO, 2009.
- [36] Technical Committee CEN/TC250 Structural Eurocodes Eurocode 1: actions on structures — general actions — part 1-4: wind actions [S]. London: British Standards Institution, 2004.
- [37] Building and Civil Engineering Sector Board. BS 6399-2:1997 loading for buildings — part 2: code of practice for wind loads

inference system of the traffic flow status [J]. Systems Engineering, 2007, 25(12):7.

- [7] 王辉.基于模糊行程时间的车辆配送问题研究[D].上海:同济 大学交通运输工程学院,2008.
 WANG Hui. Study on vehicle routing problems with fuzzy travel time [D]. Shanghai: Tongji University. College of Transportation Engineering,2008.
- [8] 孙亚.基于数据质量的定点交通信息采集系统研究[D].上海: 同济大学交通运输工程学院,2008.
 SUN Ya. Study on fixed traffic information collection system based on data quality[D]. Shanghai: Tongji University. College of Transportation Engineering,2008.
- [9] 胡小文,杨东援.城市快速道路交通流密度的估计[J].交通运输系统工程与信息,2008,8(3):79.
 HU Xiaowen,YANG Dongyuan. Estimation of traffic density on urban freeways [J]. Journal of Transportation Systems Engineering and Information Technology,2008,8(3):79.
- [10] May A D. Traffic flow fundamentals[M]. [S. l.]: Prentice Hall, 1990.
- [11] LIN Weihua, Dike Ahanotu. Validating the basic cell transmission model on a single freeway link [M]. Berkeley: University of California, 1994.
- [12] Cayford R, Lin W H, Daganzo C F. The netcell simulation package technical description, technical report [R]. Berkeley: University of California, 1997.
- [13] TOPL Group. Cimsim traffic Macro-simulator for MATLAB [EB/OL]. [2010 - 04 - 25]. http://Path. Berkeley. Edu/Topl/ Software. Html.
- Alex A Kurzhanskiy, Pravin Varaiya. Ctmsim an interactive macroscopic freeway traffic simulator [R]. Berkeley: Department of Electrical Engineering and Computer Sciences, 2008.
- [15] Gomes G, Horovitz R, Kurzhanskiy A, et al. Behavior of the cell transmission model and effectiveness of ramp metering [J]. Transportation Research, 2008, 16(4):485.

[S]. London: British Standards Institution, 1997.

- [38] American Society of Civil Engineers. ASCE/SEI 7 05 Minimum design loads for buildings and other structures [S]. New York:ASCE,2005.
- [39] Department of Civil Engineering Indian Institute of Technology Roorkee. IS: 875 (Part3): wind loads on buildings and structures — proposed draft & commentary [S]. Roorkee: Indian Institute of Technology, 2003.
- [40] Architectural Institute of Japan. AIJ 2004 Recommendations for loads on buildings [S]. Tokyo: Architectural Institute of Japan, 2004.
- [41] 中华人民共和国建设部.GB 5009—2001 建筑结构荷载规范
 [S].北京:中国建筑工业出版社,2002.
 Ministry of Construction of P R China.GB 5009—2001 Load code for the design of building structures [S]. Beijing: China Architecture and Building Press,2002.