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摘要：近年来，基于卷积神经网络深度学习的感知算法在自

动驾驶车辆环境感知系统中发挥着越来越重要的作用。由

于在神经网络训练过程中，训练数据无法覆盖所有极端场

景，因此如何保证基于深度学习的感知算法在极端场景下的

安全性和可靠性，仍是一个亟待解决的问题。传统的基于真

实行驶里程的验证方法，在获取极端场景数据上危险性高，

经济性差，因此很难检验驾驶功能在极端场景下的性能。基

于虚拟场景的仿真验证方法，虽然可以通过设置场景参数来

生成大量测试场景，但是通过简单的参数组合并不能有效的

生成极端场景。本文展示了一种在虚拟环境中生成极端场

景的方法，用于训练和测试基于深度卷积神经网络的车道线

识别算法。首先将场景特征用参数进行表示，然后使用deep 
Q⁃learning 强化学习的方法，来生成极端场景的参数组合。

通过与随机组合以及成对组合场景参数的方法进行对比，可

以看出该基于强化学习的场景生成方法可以更有效地生成

极端场景，因此可提高自动驾驶感知功能的测试效率，同时

可为卷积神经网络提供更多的极端场景训练数据。
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Abstract： Deep learning-based perception algorithms 
have gained importance in autonomous vehicle perception 
systems in recent years. Since the training data cannot 
cover all critical scenarios and corner cases， how to 
ensure the safety and reliability of deep learning-based 

perception functions in crucial scenarios is still an open 
challenge. Conventional approaches test the driving 
functions in real-life environments， which can be risky 
and uneconomic to validate in corner cases. Virtual 
scenario-based simulation validation approaches can 
generate a large number of test cases by setting test 
scenario parameters， but the purely combinatorial 
parameter cannot effectively generate corner cases. In this 
paper， we present a novel approach to generating corner 
cases in a virtual environment for validation of a CNN 
（Convolutional Neural Network）-based lane detection 
function. We represent the scene features with 
parameters， and then use the deep Q-learning 
reinforcement learning approach to generate the 
parameter combinations of corner cases. In addition， by 
comparing with the approaches of random combination 
and pairwise combination of scene parameters， our 
approach can generate corner cases more efficiently and 
improve the testing efficiency of the autonomous driving 
perception functions.

Key words： automated driving； corner case；  

convolutional neural network； reinforcement learning 

Autonomous driving is one of the key topics in 
research and industry.  Through many sensors （e. g.  
vision sensors， radar， lidar， etc.）， self-driving 
vehicles can recognize their surroundings and identify 
potential hazards to ensure a safe driving.  Since 
convolutional neural networks can automatically 
extract features with generalization ability and 
robustness， it is increasingly used in environment 
perception functions， especially vision-based 
environment perception functions in autonomous 
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driving.  However， how to effectively test the safety 
and reliability of deep learning-based perception 
algorithms， especially in corner cases， is still an open 
challenge.

Conventional validation methods require the 
accumulation of a certain number of safe driving 
miles.  According to Lipinski［1］ ， the self-driving 
vehicle must complete a distance of 6. 14 billion km of 
safe driving range on public roads before they can be 
awarded approval for series production.  A 
considerable part of the driving scenarios on public 
roads is common scenarios， which are not very 
helpful for validating the algorithm.  Furthermore， the 
number of corner cases in real-live driving is limited.  
It is unsafe for drivers and other traffic participants 
when acquiring data of corner cases.  This is not an 
option to validate autonomous driving functions with 
such a long test distance in terms of economy， 
feasibility， and safety.

Another validation method is the scenario-based 
validation method.  By validating the autonomous 
driving function in different test scenarios as well as 
critical scenarios to determine the safety and reliability 
of the driving functions.  For the scenario-based 
method， a large number of test scenarios can be 
constructed effectively and reproductively through the 
combination of scenario parameters. ［2］ Moreover， 
critical scenarios and corner cases can be generated in 
the virtual world by utilizing the simulation software.  
The scenario-based virtual validation method can be 
effortlessly combined with Model-in-the-Loop and 
Software-in-the-Loop test methods， to support the 
full development process from the system 
development stage to the system testing stage.  
However， the scenario describing parameter space 
usually very huge， the corner case scenarios cannot 
be generated effectively by simple combination of 
scenario parameters.  For this reason， an effective 
method is needed to search for corner case scenario 
parameter combinations in the massive parameter 
space.

1 Corner case and scenario-based 
validation method 

The deep learning algorithms in autonomous 
driving need to be trained with a large quantity of 
data.  To improve the reliability and safety of deep 
learning algorithms in real-live driving， more data is 
needed， especially the data from uncommon scenarios 
or even dangerous scenarios in the real world.  These 
scenarios or scenes are called corner cases.  According 
to Kowol et al. ［3］， corner cases include anomalies， 
unknown objects or outliers， which are outside of 
training data of deep learning algorithm.  Moreover， 
corner cases are relative to the normal driving 
scenarios.  Corner cases occur infrequently and 
usually represent that the vehicle is in critical 
situation.  Since a corner case is also a scenario， a 
scenario-based method can be used to generate corner 
cases in different situations.

Scenario-based validation method plays an 
essential role in the testing of autonomous driving 
functions in recent years.  Scenarios are generally to 
substantiate test cases for autonomous driving 
functions［4］.  Therefore， the scenario-based validation 
method can be used to generate uncommon scenarios 
as corner cases to support the training and validation 
of deep learning functions in autonomous driving.  
There are many scenario description methods in the 
current research field， among which the 
representative ones are：

The Pegasus project［5］ presented a 6-layer 
scenario description model to categorize the traffic 
elements.  Exchangeable and reproducible scenarios 
can be defined with the 6-layer model.

Ebner［6］ allocates three components to the 
scenario：

- Ego-vehicle： defines some parameters of the ego 
vehicle itself.

- Traffic participants： other vehicles， pedestrians， 
bicycles， etc.

- Environmental elements： roads， infrastructure， 
weather， light， and other objects.

The scenario description method provides the 
basic elements needed to describe the scenario.  The 
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scenario elements can be selected to generate the 
required study scenarios.  Then， the scenario 
extraction method is used to select the hazard 
scenarios as corner cases.

Ahmed［7］ et al.  proposed a narrative-based 
scenario generation methodology to generate 
challenging scenarios in virtual environment.  Ahmed 
et al.  used CARLA virtual environment for a 
generation s set of scenarios of different weather 
conditions and different number of traffic participants 
for analyzing the driving performance of an Artificial 
Intelligent（AI） agent in simulation.  Challenging 
scenarios are represented by the complexity of the 
scenario.  Song［8］ et al.  establish an approach for 
critical test scenario identification by selecting the 
parameters of critical scenarios with an optimization 
model.  The optimization model generates the next 
new scenario with distinct parameter values， which 
works as the test scenario for the simulation platform.  
Kowol［3］ et al.  purposed an approach to generate 
synthetic corner cases using a human-in-the-loop.  In 
the test loop， a human as the driver controls the 
vehicle according to the semantic segmented images 
from an AI function.  Another human as the safety 
officer， observes the original images to determine 

whether the driver has misunderstood the semantic 
segmented images.  When the safety officer thinks 
that the driver has misunderstood the scene， the 
scene will be stored as corner cases.  These corner 
case generation methods employ simulation tools to 
rapidly generate a large number of virtual scenarios 
that provide data for training， validation， and testing 
of AI functions.  However， these methods have some 
weaknesses， such as the inefficiency and low 
automation of corner case generation.

Motivated by the study of Kowol［3］， we focus on 
automatic corner cases generation for CNN-based 
autonomous driving function and employ a deep Q-

learning approach to generate parameter combinations 
of relevant and critical scenes.  In this paper， we 
introduce a method for corner case generation in the 
virtual world and used CNN-based lane detection as 
an example.  Environmental elements are the main 
factors affecting CNN-based lane detection.  
Therefore， in this approach， we use Ebner's scenario 
description method［6］ to model the scene.  The lane 
detection algorithm uses the encoder-decoder U-Net 
to perform image semantic segmentation of lane lines 
and backgrounds.  The network architecture is shown 
in the Fig. 1.

The input is the front-view camera image.  The 
network performs a binary classification of each pixel 
point of the image to determine whether it belongs to 
the lane line or the background.  The difference 
between the predicted lane lines and Ground Truth is 
calculated to determine whether the lane lines are 
correctly detected.  Since the number of lane line 

pixels is significantly less than the number of 
background pixels in the road scene， the training data 
is imbalanced.  Dice Loss［9］ is used to calculate the 
difference between the predicted lane lines and ground 
truth.  Dice Loss takes a value between 0 and 1.  The 
larger the difference between the predicted value and 
the target value， the more inaccurate the classification 

 

Decoder-Network  Encoder-Network  

Predicted lane Road with marking 

CNN Lane Detection 

Fig. 1　CNN-based lane detection
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is， and the closer the dice loss is to 0.

Dice loss = 1 - 2 || X ∩ ||Y
|| X + ||Y

The recognition target for the lane detection 
algorithm is the lane marking.  Therefore， 
environmental elements are mainly considered for 
description of the scene， for example， road 
curvature， lighting conditions， weather conditions， 
etc.

In this paper， corner cases are defined as： when 
the lane detection algorithm cannot correctly 
recognize the lane line in this scene， then the scene is 
saved as a corner case.  A threshold of the difference 
between the predicted and the target can be used to 
determine whether the lane lines are correctly 
detected.

2 Concept for corner cases generation

In this section， the corner cases generation 
method for the CNN-based lane detection algorithm is 
presented.  The environment parameters are used to 
describe the scene， and then modeling software is 
used to transform the scene parameters into virtual 
camera pictures.  The system under test is a CNN-

based lane detection algorithm.  The test results are 
analyzed to determine whether the input scenes are 
corner cases.
2. 1　Corner case generation process　

The corner case generation process is as follows：
（1） Initialize the environment parameters；
（2） Generate virtual scenes；
（3） Execute the test；
（4） Analyze the test results；
（5） Store the parameters of corner cases.
The environment parameters are first randomly 

initialized by using a stochastic algorithm to generate 
the initial scene parameter combinations.  The scene 
parameters are through the API of the scene modeling 
software as input into the scene modeling software to 
generate the virtual scene.  The front camera pictures 
of the virtual scene are acquired by the virtual camera.

During the execution of the test， the camera 
pictures are entered the lane detection network as 

input data and the lane pixels in the pictures are 
predicted by the CNN algorithm.  The difference 
between the predicted lane line and the target lane line 
is analyzed to determine whether the scene is a corner 
case.  In the corner case， the CNN network cannot 
recognize the lane lines correctly.  Therefore， the 
combination of corner case parameters can be stored 
on the computer to be subsequently retrained to the 
network.  The performance of the CNN network can 
be improved.
2. 2　Deep Q learning in corner cases generation

After storing the parameters of the corner cases， 
the new combination of parameter can be generated 
by looping.  This is a decision process to decide how 
to update the parameters and the combination of 
parameters.  So we can take an action to update a 
scene parameter， and the state after the decision is the 
virtual world scene， which can be generated after 
updating the parameter.

How to adopt an effective strategy to update the 
parameter combination can be solved by using Q-

learning reinforcement learning.  When the state-

action pairs have a large dimensionality， deep Q-

learning can be used to approximate the Q-table in Q-

learning.  Therefore， to improve the testing efficiency 
as well as to generate the corner cases more 
efficiently， the deep Q-learning reinforcement 
learning algorithm was used in our work.

In the above corner cases generation process 
（4）， the test result is the difference between the 
predicted lane line and the target lane line.  
Therefore， the scene parameters and the 
corresponding test results can be used as input to 
generate the next parameter combination using deep 
Q-learning reinforcement learning.  A corner case 
generation module based on deep Q-learning can be 
added after （4） to generate new scene parameters.

Fig. 2 shows the corner case generation process 
using deep Q-learning reinforcement learning. It can 
be assumed that the corner case generation module is 
an intelligent agent， which can change the scene 
parameters （states） through a series of actions 
（actions） and then generate a new scene parameter.  
After the action of the agent， we can define that the 
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environment gives a positive reward when the agent 
generates a corner case and gives a penalty when it 
generates a normal scene.  The intelligent agent 
interacts with the environment and constructs a Q-

table corresponding to the rewards and penalties， so 
that the agent can prioritize the actions that generate 
corner cases according to the Q-table. Q-table is 
updated with the formula：［10］

Qnew ( st， at)= (1 - α)Q ( st， at)+ α (rt +

γ max
a

 Q ( st + 1，a) )
where： rt is the reward when moving from the state st 
to the state st + 1； α is the learning rate （0 < α < 1）； γ 
is the discount factor （0 < γ < 1）.  The learning rate 
determines the extent to which the newly acquired 
information replaces the old information.  The 
discount factor determines the importance of future 
rewards.  The smaller the discount factor， the more 
short-sighted the Q-learning Agent is， and only cares 
about the rewards currently available.

The parameter space consisting of environmental 
parameters in this work is huge， and the 
corresponding Q-table will be too large to be 
completely stored in computer memory.  Thus， a 
neural network can be used here to approximate the 
Q-table.

During the training process of deep Q-learning， 
states， actions， environmental rewards and the next 
state can be stored in an experience pool， and then a 
small batch of experience can be randomly sampled 
from the experience pool as training data and used to 
update the estimation of the Q-value.  This method of 
using experience to train a neural network is called 
Experience Replay［11］.  Through experience replay， 

the intelligent agent can learn from previous 
experience， not just from current experience， and 
avoid forgetting what it has already learned.  In 
addition， traditional deep-Q-learning uses only one 
neural network to estimate the Q-table.  When the 
training data have fluctuations， it will cause 
inaccurate estimation of the updated Q-value 
according to the formula［10］， which will affect the 
deep-Q-learning performance and robustness.  
Therefore， a fixed Q-targets-Network［11］ can be 
adopted as a second neural network to calculate the 
maximum Q-value for the next state.  The Q-value in 
fixed Q-targets-Network is updated with the formula：

yt = rt + γ max
a

 Q ( st + 1，a)
The parameters in fixed Q-targets-Network are 

generally updated less frequently to avoid Q-value is 
overestimated or underestimated， which improves the 
robustness of the algorithm.  The network is trained 
using mean squared error as the loss function.

3 Implementation 

Corner cases are a challenge for deep Learning 
algorithms.  Generating as many reproducible corner 
cases as possible can support improving the 
performance of training and inference.  Collecting 
corner cases in the real world is not an option， 
because corner cases occur infrequently and are 
usually dangerous when they occur.  For this 
purpose， we used the autonomous driving simulator 
CARLA［12］ to generate a virtual world in this work.  
CARLA is an open source virtual scenario generation 
software whose scenarios are modeled using Unreal 
Engine and can generate different road traffic 
scenarios to develop and test autonomous driving AI 

Fig. 2　Corner cases generation
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algorithms.  CARLA provides flexible APIs to define 
scenario parameters such as roads， traffic 
participants， weather， lighting， and road water.  
Fig. 3 shows the virtual scenes generated in CARLA.

As a case study for the visual detection 
algorithm， we mainly consider the parameters that 
have an impact on the camera image， such as 
Weather， lighting， road condition， and sensor failure 
are the main influencing factors of camera-based lane 
detection.  Considering the used CARLA （Version 
0. 9. 10） only cloudiness， precipitation， wind 

intensity， sun azimuth and fog as weather factors can 
be applied.  The cloudiness and wind intensity have 
less influence on camera-based lane detection.  The 
precipitation in CARLA lacks the distortion caused by 
raindrops on the windshield compared the real scene.  
Therefore， we only consider the sun azimuth and fog 
as weather factors in this case study.  Lighting， road 
condition and sensor failure are adjusted using the 
parameters in the CARLA API.  The following 6 
scene parameters and their value ranges are defined in 
this paper.

- Road curvature： when the road curvature is 
negative， it is a left-turn road； when the road 
curvature is equal to 0， it is a straight road； when the 
road curvature is positive， it is a right-turn road.  The 
value range ［－1， 1］， where -1 means left turn， 0 
means straight ahead， and +1 means right turn.

- Ambient brightness： set by the sun altitude 
angle in CARLA， its value range is ［－90， 90］， 
where －90 is late night， +90 is noon

- Sun azimuth： indicates the azimuth of the sun 
in the sky in the CARLA world， and its value range 
is ［0， 360°］.

- Fog density： weather parameter in CARLA 
world， indicating the visibility of vehicles， the range 
of values is ［0， 100］.  When this parameter is 0， the 
weather is clear， and the visual distance is 
unrestricted.  In contrast， when this parameter is 
100， the visual distance is highly limited， 
approximately around 10 meters.

- Water on the road： indicates whether there is 
water on the road surface， the value range is ［0， 1］， 
where 0 means the road is dry and 1 means there is 
visible water on the road.

- Blurring caused by the dirty lens： the value 
range ［0， 1］， where 0 means the lens is clean and the 
screen is normal； 1 means the lens is dirty and the 
screen is blurred.

Different scenes can be generated by changing 
the above six parameters and the corresponding 
combinations of parameters in the process of corner 
case generation.  The agent in deep Q-learning model 
proposes to change the scene parameter so that 
different combinations of parameters are created.  The 
agent can make 6 actions with 6 scene parameters.  
After executing an action， the environment generates 
a new state and rewards， which is in the CARLA 
virtual world.  The environment rewards are related 
to the predicted result of the lane detection algorithm.  
The relation between actions and states can be 
approximated by a neural network.  The agent in Q-

learning always chooses the optimal action to get the 
maximum reward.  However， only exploiting the 
current knowledge may lead to sub-optimal behavior.  
For the exploration of new options， we apply an 
epsilon-greedy approach to ensure that the agent has a 
probability to choose a random action for exploration， 
instead of always exploiting with prior knowledge.

Metric for corner cases： A threshold can be set 
to determine whether the lane lines in a scene are 
correctly detected or not.  In this work， we assume 
that if the dice loss between the predicted and true 
values is greater than 0. 5， the lane lines of the scene 
will be considered as not correctly recognized.

Fig. 3　CARLA virtual scenes
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4 Results 

4. 1　Number of corner cases　
To test the deep Q-learning corner cases 

generation approach， we generated 20，000 test 
scenes.  The number of scenes in which lane cannot 
be accurately recognized is 11148， of which 56% are 
corner cases. As a comparison， we used two other 
approaches to generate test scenes：

- Random Testing： 20，000 test scenes were 
generated using a combination of randomly selected 
scene parameters.  The number of scenes in which the 
lane cannot be recognized is 4833， accounting for 
24%.

- Combination Testing ［13］： We used pairwise 
testing to combine discrete scene parameters， by the 
Microsoft PICT Tool to generate 2nd order 
combination test cases.  A total of 18281 test scenes 
were generated， with 4092 scenes being corner 
cases， accounting for 22%.

Therefore， the deep Q-learning reinforcement 
learning method generates a higher percentage of 
corner cases.  The corner cases generation approach is 
more effective.  Fig. 4 shows the comparison of the 
corner cases generated by the random testing， 

combination testing and the deep Q-learning 
reinforcement learning method.
4. 2　Analysis of corner cases　

Different scene parameters have different effects 
on the CNN-based lane detection algorithm.  Fig. 5 
shows the effects of ambient brightness， water on the 
road， and dirty lens on the tested CNN algorithm.  It 
can be observed that the lane detection algorithm is 
not accurate when the ambient brightness is low， 
when there is no water on the road （reflective effect 
of the dry road）， and when the lens causes blurred 
images due to dirty lenses.

Some of the generated corner cases are shown in 
Fig. 6.  For example， （a） shows the blurred image 
caused by dirty lens， （b） the reflection phenomenon 

of water on the road surface under sunlight， （c） 
waterlogged road surface at night， and （d） dry road 
surface under high ambient brightness.
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Fig. 4　Comparison of corner cases generated by 
random testing, combination testing and deep 
Q-learning

 

Fig. 5　Corner cases scene parameter distribution
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5 Conclusions and outlook 

In this paper， we demonstrate a method to 
validate CNN-based perception functions through 
virtual tests and employ deep Q-learning 
reinforcement learning to generate corner cases.  By 
comparing with the methods of random testing and 
combination testing， this method can generate corner 
cases effectively and improve the testing efficiency.

In the future some potential improvements can 
be explored： 

（1） More parameters can be considered to 
describe the environment and increase the 
environment details， such as precipitation， snow， the 
number of lanes， road users， etc.  

（2） In this work we mainly analyze the scene in 
the corner case， and the scenario parameters are 
independent of time.  Future research can be extended 
to dynamic scenarios， such as scenario parameters 
changing with time.  

（3） Other reinforcement learning methods can 
be used to analyze the corner case in perception， 
decision making， and control algorithms in automated 
driving.
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