文章编号: 0253-374X(2024)07-1126-09

DOI: 10. 11908/j. issn. 0253-374x. 22371

盐碱地改造用高效阻盐材料的制备及其性能研究

张 雄,朱国鑫,吕欣妍

(同济大学先进土木工程材料教育部重点实验室,上海201804)

摘要:为改良盐碱土壤,制备了一种隔水阻盐性能优异的超 疏水颗粒材料,构建隔水阻盐材料与蓄水模式结合的盐碱地 改造体系。以大漠砂为芯材,通过表面覆膜进行疏水改性, 探究树脂和微纳米辅材掺量对材料疏水性、抗渗性和透气性 的影响规律。利用微型土柱模拟地下水盐迁移过程,探究材 料的隔水性能和阻盐性能。结果表明,在树脂、疏水碳酸钙 和纳米二氧化硅掺量分别为1.0%、0.8%和0.2%时,材料接 触角达到153.6°,耐静水高度达230mm,并维持良好的透气 性能。在微型土柱模拟试验中,隔水阻盐材料对水分蒸发和 盐分上移的抑制作用明显,蒸发抑制率为50%~70%,盐分 抑制率大于99%且在20次阻盐循环后维持97.5%以上。

关键词:盐碱地改良;超疏水材料;隔水阻盐;蒸发抑制 中图分类号:TU577 文献标志码:A

Preparation and Study of Properties of High-Efficiency Salt-Blocking Materials for Saline-Alkali Soil Reconstruction System

ZHANG Xiong, ZHU Guoxin, LV Xinyan

(Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, Tongji University, Shanghai 201804, China)

Abstract: In order to improve saline-alkali soil, a superhydrophobic particle material with an excellent waterproof and salt-blocking performance was prepared, which was used to build a saline-alkali soil reconstruction system with a water-storage mode. Substrate material and desert sand were modified with a hydrophobic coating. The influences of resin content and micro-/nano-material content on the hydrophobicity, impermeability and breathability of the material were studied. A self-designed mini soil-column was used to simulate the migration process of underground saline water, and the waterproof and salt-blocking properties of the prepared materials were explored. The results show that when resin, hydrophobic CaCO₃ and nano-SiO₂ contents were 1.0 %, 0.8 % and 0.2 %, respectively, the material achieved a water contact angle of 153.6°, a water-resistant height of 230 mm, and maintained a good air permeability. The mini soil-column simulation test indicates that the material has a strong inhibition effect on the water evaporation and the upward movement of salt, with an evaporation-inhibiting rate of 50 % to 70 % and a salt-blocking rate of more than 99 %, which maintains 97.5 % after 20 test cycles.

Keywords: saline-alkali soil improvement; superhydrophobic materials; waterproof and saltblocking; evaporation-inhibition

盐碱地在全球分布广泛,是最重要的土地资源 之一。当土壤表层水溶性盐类含量超过0.1~ 0.2%,或土壤表层碱化度高于5%时,即认为该土 壤属于盐碱土,土体中含有较多的盐碱成分使其具 有不良的物理化学性质^[1-2]。盐碱土形成的主要原因 是地表蒸发量大,地下水携盐并沿土壤毛管孔隙迁 移至地表,水分蒸发后盐分留在土壤表层,若没有足 够淡水将盐分排出,盐分便在土壤表层逐渐积聚[3]。 自然气候条件、地理位置、人为耕作制度不合理及过 度砍伐等都能导致土壤盐碱化。盐碱土对作物会产 生不良作用,大量的可溶性盐使植物细胞渗透压增 大,阻碍养分和氧气供应,引起作物缺水或死亡,产 量大幅下降,严重影响农业生产和经济发展[45]。盐 碱地分布于全世界100多个国家及地区,据不完全 统计,全世界盐渍土面积已高达9.544×10¹² m^{2[6]},约 占全球土地总面积的10%,且仍在不断增长。我国 是土壤盐碱化较为严重的国家之一,目前盐碱荒地 和盐碱障碍耕地总面积已超过3.333×10¹¹ m^{2[7]},居 世界第三位,而其中仅5.7×10⁸ m²的盐碱地已被开 垦种植,仍有大量的盐碱土资源暂未开发利用^[8],具

收稿日期: 2022-08-26

第一作者:张 雄,教授,博士生导师,工学博士,主要研究方向为建筑功能材料及生态环境材料。 E-mail:zhangxiong@tongji.edu.cn

有成为优质农业生态用地的潜力^[9]。因此,合理改 良利用盐碱地,对改善人类生存环境、实现农业可持 续发展和经济蓬勃增长具有重要意义。

目前,盐碱地的改良利用已有大量研究^[10-12],包 括化学、生物、物理和工程水利等改良方法。唐晓 倩[13]探究了木醋液对盐渍土的化学性质和土壤微生 物群落的影响,结果表明木醋液能够显著降低土壤 pH,增加土壤碳、氮和磷含量,提高土壤微生物活性。 Kumari 等^[14]从盐生植物中克隆了一种新型基因 SbRPC5L并转移至实验植株上,与对照组相比,转基 因植株在盐环境中生长更优。Zhao等^[15]指出,在盐 碱土壤中铺设秸秆隔层并在地面覆膜,能改变土壤盐 分布,植被根区土壤盐分含量明显降低。李慧琴等[16] 认为,在土壤表层下40 cm 深处埋设小麦、玉米两种 秸秆隔层可以显著抑制盐随水上移。王琳琳等[17]对 比分析了不同隔盐材料对盐渍土水盐动态变化的影 响,结果表明铺设沸石等隔盐材料可以显著增加土壤 含水量,降低土壤盐含量。盐碱地改良技术经过多年 的探索实践取得了显著成效,但治理过程中仍面临诸 多问题,如时效性短、投资回报率低、对土壤产生次生 污染、大规模使用困难和水资源浪费等,亟待开发从 根本上阻断地下返盐的盐碱地改良技术,实现长效性 改良,建立可大面积推广的盐碱地改造体系。

盐碱地改良的研究发现土壤盐分转移与水分运 动密切相关^[18-19],盐碱地治理可归结为水分迁移问题, 因而铺设隔水阻盐材料阻断地下水上升是从根本上 治理盐碱地的有效方式。同时,将盐碱水留在蓄水沟 内可减少农田排水,通过盐分扩散和水位升降控制土 体盐分含量,实现盐碱地的治理^[20]。本文将隔水阻盐 材料与"改排为蓄"模式结合,为构建盐碱地长效改造 体系,制备了一种隔水阻盐性能优异的超疏水颗粒材 料,探究了原材料相关参数对其疏水性能、抗渗性能 和透气性能的影响规律,并利用微型土柱模拟地下水 盐迁移过程,探究其抑蒸性能和阻盐性能。

1 试验材料与方法

1.1 试验原材料

大漠砂,粒径0.1~0.6 mm,购于辽宁力拓硅 砂;氟碳树脂,黏度410~900 mPa·s,固含量(50± 1)%,购于上海氟康化工;N75型异氰酸酯,购于上 海氟康化工;醋酸丁酯,分析纯,99.5 %,购于麦克 林试剂;疏水型碳酸钙,粒径3~10 µm,购于济南盈 鑫化工;高岭土,粒径1~5 µm,购于丰聚矿产;疏水 型纳米SiO₂,粒径20~70 nm,购于上海缘江化工;土 壤,非盐碱土,购于淮安松裕农业科技有限公司。

1.2 隔水阻盐材料的制备

将大漠砂烘干后加入搅拌锅中,加入适量氟碳 树脂及异氰酸酯固化剂,搅拌均匀;在树脂固化前先 后加入微米辅材(疏水型碳酸钙或高岭土)和纳米辅 材疏水型纳米SiO₂,搅拌均匀,待树脂固化后得到隔 水阻盐材料。添加疏水型碳酸钙和高岭土的隔水阻 盐材料分别记为I型和II型隔水阻盐材料。

1.3 测试与表征

采用 EQUINOX55 红外光谱仪(FTIR)对材料 进行化学结构分析,将试样放入烘箱中干燥3h后研 磨至粉末状,与适量 KBr均匀混合后压片测试红外 光谱,光谱范围400~4 000 cm⁻¹,分辨率4 cm⁻¹。采 用 Quanta 200 FEG 型高分辨场发射扫描电子显微 镜(SEM)对材料表面微观形貌进行表征,样品表面 喷金处理。采用 KRUSS-DSA100 型接触角测量仪 对样品进行接触角测试,测量水滴在紧密排列的材 料表面的接触角,如图 1a 所示,水滴体积4 μL。抗 渗性能测试采用自制耐静水高度测试装置,如图 1b 所示。将试样铺设于装置内部,每隔5 min向内筒添 加一定量的水,直至装置底部出现漏水,记录此时液 柱高度为该试样的耐静水高度(mm);采用 STZ-直 读式透气性测定仪测定试样透气性能。

Fig. 1 Hydrophobicity test of sample

1.4 阻盐性能测试

目前国内尚无用于土壤阻盐性能测试的标准和 装置,采用自行设计搭建的微型土柱模拟地下水盐 迁移的过程(图2),通过蒸发抑制率和盐分抑制率两 项指标表征材料的隔水阻盐性能。以硬质塑料杯作 为微型土柱,将杯底钻孔并用滤网包裹;试验土壤分 层装入土柱,阻盐碱材料铺设于土柱中部,厚15 mm,上下土壤层均为50 mm。装填好的土柱放入装 有5% NaCl溶液的烧杯中,将土柱与烧杯边缘密

封,确保水分只能通过土柱蒸发扩散。对照组土柱

中部不铺设阻盐碱材料,其他与实验组相同。

组建好的微型土柱放入50℃的烘箱模拟干旱 高温环境,每隔24h取出称重。当两次称重质量差 小于0.1g时认为水分已全部蒸发。采用DDS-307A型电导率仪测定土壤电导率,由土壤电导率计 算土壤含盐量。相关计算公式如下:

$$E = m_0 - m_i \tag{1}$$

$$v_{\rm d} = \frac{m_{i-1} - m_i}{24} \tag{2}$$

$$v = \frac{\bar{v} - v_{\rm d}}{\bar{v}} \tag{3}$$

$$S = 3.011 \, 1x$$
 (4)

$$R = \frac{S_0 - S_x}{S_0 - S_*} \tag{5}$$

式中:E为土壤累计蒸发量,g; m_0 为土柱初始质量, g; m_i 为土柱第i天的质量,g; v_d 为实验组日蒸发率, g·h⁻¹; \bar{v} 为对照组日蒸发率,g·h⁻¹;v为蒸发抑制 率,%;S为土壤含盐量,g·kg⁻¹;x为电导率,ms· cm⁻¹;R为盐分抑制率,%; S_0 为对照组表层含盐量, g·kg⁻¹; S_x 为实验组表层含盐量,g·kg⁻¹; S_* 为原土壤 含盐量,g·kg⁻¹。

根据GB/T 33469—2016《耕地质量等级》^[21]和 DB 13/T1487—2011《盐碱地园林绿化施工规 范》^[22],用于栽植作物的土壤全盐含量不得高于 0.3%。规定土壤表层盐含量≪3g·kg⁻¹为合格,计 算得盐分抑制率需大于88.5%,以此作为材料阻盐 性能合格标准。

2 结果与讨论

2.1 蓄水条件下的盐碱地改造体系基本思路

本文将隔水阻盐材料与"改排为蓄"模式结合, 由盐分扩散以及水位升降控制土体盐分含量,形成 盐碱地长效改造体系,水盐迁移过程如图3所示。 降水或者灌溉如图3a所示,蓄水池内水位升高,水体 盐浓度低,土体盐浓度高,盐分从盐碱土向蓄水池扩 散。随着水分的入渗,上层土壤含水率增加,有利于 植物的生长。由于隔水阻盐材料层抑制水的下渗, 盐分转移只发生在上层土体与蓄水池之间。水分蒸 发时盐分迁移过程如图3b,蓄水池内的水分蒸发,水 位降低,水体盐分浓度升高。当水体盐浓度增大至 高于土壤时,盐分由水体向下层盐碱土体扩散。上 层土壤盐分不会增加。由于隔水阻盐材料层具有阻 断地下水沿土壤毛细孔隙返渗的作用,避免了盐随 水上的发生。

Fig. 3 Salt and water migration process in saline-alkali soil reconstruction system

2.2 傅里叶红外光谱测试结果

隔水阻盐材料试样及其原材料的红外光谱测试 结果如图4所示。1087 cm⁻¹处的特征峰为Si-O-Si 键的反对称伸缩振动和弯曲振动,779 cm⁻¹和460 cm⁻¹处为Si-O键的反对称伸缩振动和弯曲振动,I 型和II型隔水阻盐材料在460 cm⁻¹和1087 cm⁻¹处 特征峰相比于大漠砂更强和宽,表明SiO。颗粒成功 附着于大漠砂基材。Ⅱ型隔水阻盐材料在1087 cm⁻¹处峰更宽是由于高岭土的基本组成单元为硅氧 四面体和铝氧八面体。I型隔水阻盐材料在1436 cm⁻¹处的特征峰为疏水碳酸钙中方解石晶体的C-O 键的不对称伸缩振动。I型和II型隔水阻盐材料在 1834 cm⁻¹处为-OCF=CF₂的特征吸收峰,这是氟碳 树脂的特征基团。综上,氟碳树脂与微纳米成功包 覆颗粒芯材且该过程为物理附着。含氟基团具有很 低的表面能,使表面疏水[23-24],而微纳米粗糙结构会 进一步提高表面疏水性[25-26]。

2.3 扫描电镜测试结果

图 5 为隔水阻盐材料样品的微观形貌图像,可 以观察到微纳米颗粒在砂粒表面随机分布,部分由 于静电吸附积聚成团,在砂粒表面形成了微观粗糙 度。尺度较小的纳米颗粒附着在较大的微米颗粒

上,并通过树脂黏附于芯材表面,形成表面微-纳二 级粗糙结构。如图6所示,根据Cassie-Baxter 润湿 模型^[26],微-纳米分级粗糙结构使表面与液体接触时 固液界面滞留一层空气层,减少固液接触面积,大幅 提升材料的疏液性,因而微纳米辅材有利于隔水阻 盐材料的疏水性和抗渗性的提升。扫描电镜图像与 傅里叶红外光谱测试结果相符,进一步证明成功在 芯材表面覆膜并构建了微纳米粗糙结构。

2.4 材料宏观性能

隔水阻盐材料的宏观性能包括疏水性、抗渗性和透气性。覆膜材料一方面包裹芯材降低表面能, 另一方面黏结芯材与微纳米颗粒材料,因而树脂掺量对材料的影响至关重要。图7为试样的接触角和耐静水高度随树脂掺量的变化情况。在树脂掺量为0.4%时,材料表面水接触角约为91.0°,耐静水高度 约30 mm,此时材料已具有疏水性。掺量增加至0.6%时,材料表面水接触角达到100.2°,与氟碳树脂表面接触角相近,表明此时砂粒已被树脂包裹;耐 静水高度提高至50 mm。随着覆膜材料掺量继续增加,接触角与耐静水高度趋于平稳,因此覆膜材料最 佳掺量为0.8 %~1 %。

维持覆膜树脂为1%,引入不同掺量的微纳米 材料后试样的接触角、耐静水高度和透气系数如图8 所示。保持纳米SiO₂掺量为0.4%,试样接触角和 耐静水高度随微米材料疏水碳酸钙掺量增加而增大 (图8a)。当疏水碳酸钙掺量为0.8%时材料具有超 疏水性,接触角为153.4°,耐静水高度约230 mm。 继续增加疏水碳酸钙掺量,材料疏水性和抗渗性不

图6 微-纳米疏水结构示意图

Fig. 6 Schematic diagram of micro-nano hydrophobic structure

再增大,这可能是由于材料表面粗糙结构已经饱和, 表面粗糙度不会继续增大。图8c显示透气系数随着 疏水碳酸钙掺量增加而下降,但始终大于原砂和土 壤的透气系数。保持疏水碳酸钙掺量为0.8%,随 着纳米SiO₂掺量增加,接触角和耐静水高度逐渐增 大(图8b)。当纳米SiO₂掺量为0.2%时性能达到最 佳,接触角153.6°,耐静水高度230 mm,此后接触角 小幅下降,但仍大于150°,耐静水高度基本不变。图 8d显示纳米SiO₂掺量对材料透气性的影响较小,透 气系数维持210~220 cm²·Pa⁻¹·min⁻¹。对比仅覆膜 树脂的试样(图7),加入微纳米材料的试样疏水性和 抗渗性显著提高。

综上,隔水阻盐材料具有优异的疏水性和抗渗 性,并能维持良好的透气性能。综合考虑材料性能 和经济性,覆膜材料最佳掺量为树脂1.0%,疏水碳 酸钙0.8%,纳米二氧化硅0.2%。

2.5 隔水阻盐性能研究

本文制备的盐碱地改良材料是具有良好疏水 性、防渗性和透气性的颗粒材料,将其应用于盐碱地 土壤耕作层,能在不影响作物生长呼吸的前提下阻 隔水盐向上迁移。采用微型土柱模拟盐碱地改造体 系探究其隔水阻盐性能。

2.5.1 蒸发抑制率

三组实验组(表1为配比)与均质土对照组在不 同蒸发历时下的累计蒸发量和日蒸发率变化如图9 所示。图9a显示对照组水分快速蒸发,在144h时基 本蒸发完全;实验组累计蒸发量缓慢增加,蒸发时间 显著延长。b1组在240h时蒸发结束,a1和a2组约 在264h蒸发结束,可见隔水阻盐材料对水分蒸发的 抑制作用明显。图9b显示实验组的日蒸发率在蒸 发过程中逐渐降低,并且始终远小于对照组平均日 蒸发率(1.1g·h⁻¹)。由式(3)计算得出蒸发抑制率 随蒸发历时的变化情况(图10)。除b1组有较大波 动,蒸发稳定期内(0~240h)的蒸发抑制率基本维持 在60~80%;对其中a1组的蒸发抑制率进行线性函 数拟合,所得函数式为y=60.354+0.0593x,取函 数中点 $v_y=66.8$ %作为实验组的平均蒸发抑制率。

综上,相较于对照组,实验组的水分蒸发受到明显抑制,蒸发速度平稳,无快速蒸发期,说明隔水阻盐材料对水分上移起到良好的阻隔作用,并且蒸发历时越长,蒸发抑制率越大。

2.5.2 盐分抑制率

隔水阻盐材料及对照组土壤的表层电导率随深度的变化见图11a。对照组电导率随土壤深度增加 而显著下降,土壤表层电导率高达12445 µs·cm⁻¹, 远高于均质土的电导率范围165~195 µs·cm⁻¹,显然 水携带盐分并通过土壤中的毛细孔隙不断向上运 动,盐分在土壤表层聚集。在水分蒸发完全后,土壤

表1 实验组覆膜材料配比 Tab.1 Ratio of coating materials of experimental groups

组别						
	树脂	疏水碳酸钙	高岭土	纳米SiO2		
al	1.0	0.8		0.2		
a2	0.9	0.8		0.2		
b1	1.0		0.4	0.2		

注:表中为覆膜材料所占芯材质量百分比

图8 微纳米辅材对隔水阻盐材料性能的影响规律

Fig. 8 Effect of micro-/nano-material contents on properties of waterproof and salt-blocking materials

图 9 土壤水分蒸发情况随蒸发时间的变化 Fig. 9 Soil water evaporation versus evaporation duration

表层出现的"盐斑"可以证实这一过程,如图11b所示。与之不同的是,实验组土壤表层电导率均在原 土电导率范围内,说明隔水阻盐材料起到了很好的 阻盐作用,溶液中的盐分未迁移至上层土壤。实验 组表层电导率略微升高,这是由于土壤本身含有的 少量水分在实验过程中携带土壤原有盐分向上迁移,使上层土壤层出现微弱的电导率梯度。蒸发结束后隔水阻盐材料层下界面出现裂纹,这是由于先前停滞于此的水分蒸发干燥导致土壤板结,这也佐证了隔水阻盐材料层对水盐的阻隔。

图10 蒸发抑制率随蒸发历时的变化

取0~3 cm 土层电导率平均值作为表层电导率, 根据式(4)将各土层电导率换算为盐分含量,再按公 式(5)计算盐分抑制率,所得结果见表2。由表知,对 照组表层土壤含盐量极高,而实验组盐分抑制率均 达到99.9%,大于合格线88.5%。土壤表层没有 出现返盐,电导率与原均质土基本一致,显示出优异 的阻盐效果。

表 2 电导率测试结果 Tab. 2 Results of electrical conductivity test

组别		盐分抑制			
	$0 \sim 1 \text{ cm}$	$1 \sim 2 \text{ cm}$	$2\sim3$ cm	平均值	率/%
原均质土壤	0.528	0.544	0.512	0.528	
对照组	37.474	18.807	9.620	21.967	
al	0.555	0.549	0.545	0.549	99.900
a2	0.549	0.550	0.546	0.548	99.905
b1	0.570	0.529	0.531	0.543	99.928

2.5.3 隔水阻盐材料的长效阻盐性能评估

实际场景中隔水阻盐材料会经历多次的地下水 上涨-蒸发过程,因而材料的长效阻盐性能十分关 键。实验组隔水阻盐材料在多次土柱模拟试验循环 后的盐分抑制率变化如图12所示。由图可知,盐分 抑制率随阻盐循环次数的增加而轻微下降,在20次 阻盐循环后下降约2%,仍维持97.5%以上,高于 合格线88.5%。相应扫描电镜图像显示材料的表 面微观形貌在20次阻盐循环后未产生明显变化(图 13),微纳米结构未被破坏,佐证了材料具有良好的 耐久性。一年中盐碱土壤地下水位呈周期性变化, 可分为以下几个阶段:春灌期,水位上升;植物生长 期,水位少量抬升;秋浇期,水位上升;冬灌期,水位 迅速上升;冻融期,水位全年最低。因此,一年中主 要有四次地下水位上升,20次阻盐循环相当于5年 阻盐年限。综上,隔水阻盐材料具有良好的长效阻 盐性能,可多次抵御盐分上移并维持较高的盐分抑 制率。

图12 隔水阻盐材料盐分抑制率随阻盐试验次数的变化

Fig. 12 Salt-blocking rate of waterproof and saltblocking materials versus salt-blocking cycles

图 13 隔水阻盐材料经历 20 次阻盐循环后的 SEM 图像 Fig. 13 SEM image of the waterproof and salt-blocking material after 20 test cycles

3 结论

隔水阻盐颗粒材料以大漠砂为芯材,氟碳树脂 覆膜,微纳米辅材构建表面粗糙结构。树脂起到降 低表面能和黏结微纳米辅材的作用,微纳米辅材可 进一步提高材料的疏水性。当树脂为1%,疏水碳 酸钙为0.8%以及纳米SiO₂为0.2%时,隔水阻盐 材料宏观性能最佳,接触角为153.6°,耐静水高度为 230 mm,透气系数为220 cm²·Pa⁻¹·min⁻¹。微型土 柱模拟水盐迁移试验结果显示,隔水阻盐材料对水 分蒸发和盐分上移的抑制作用显著,蒸发抑制率为 50%~70%,盐分抑制率大于99%。在20次阻盐 循环后,表面微观形貌无明显变化,盐分抑制率仍大 于97.5%,具有长效阻盐性能。隔水阻盐材料与蓄 水模式结合的盐碱地改造体系可阻断地下水盐沿土 壤毛管孔隙上升,改善土壤环境,减少水用量,有望 为盐碱地改良提供一种新途径。

作者贡献声明:

张 雄:提出研究选题,设计研究方案,设计论文框架, 提供技术和材料支持,审核论文。

朱国鑫:实施研究过程,调研整理文献,撰写论文,修订 论文。

吕欣妍:指导实验和论文撰写,指导数据分析,修订 论文。

参考文献:

- ROZEMA J, FLOWERS T. Crops for a Salinized World [J]. Science, 2008,322(5907):1478.
- [2] 刘阳春,何文寿,何进智,等.盐碱地改良利用研究进展[J]. 农业科学研究,2007,28(2):68.
 LIU Yangchun, HE Wenshou, HE Jinzhi, et al. Progress of

improvement and utilization of saline-alkali Land [J]. Journal of Agricultural Sciences, 2007, 28(2):68.

- [3] 商振芳,谢思绮,罗旺,等.我国盐碱地现状及其改良技术研究 进展[C]//2019中国环境科学学会科学技术年会论文集(第 三卷).西安:中国环境科学学会,2019:386-395.
 SHANG Zhenfang, XIE Siqi, LUO Wang, et al. Research progress on current status and improved technology of salinealkali Land in China [C]// Proceedings of 2019 Annual Meeting of Science and Technology of Chinese Society of Environmental Sciences (Volume 3). Xi'an: Chinese Society of Environmental Science, 2019:386-395.
- [4] XIE X F, PU L J, ZHU M, et al. Spatio-temporal variability of soil salinity and sodicity in agricultural reclaimed coastal wetlands, Eastern China [J]. Archives of Agronomy and Soil Science, 2020,66(12):1639.
- [5] SINGH K, SINGH B, SINGH R R. Effect of land rehabilitation on physicochemical and microbial properties of a sodic soil[J]. CATENA, 2013,109:49.
- [6] ZHU J K. Plant salt tolerance [J]. Trends in Plant Science, 2001,6(2):66.
- [7] 王佳丽,黄贤金,钟太洋,等.盐碱地可持续利用研究综述
 [J].地理学报,2011,66(5):673.
 WANG Jiali, HUANG Xianjin, ZHONG Taiyang, *et al.* Review on sustainable utilization of salt-affected land [J]. Journal of Geographical Sciences, 2011,66(5):673.
- [8] 王景立,韩楠楠,冯伟志,等.东北苏打盐碱地整治工程技术 与装备研究综述[J].农业与技术,2018,38(23):1.
 WANG Jingli, HAN Nannan, FENG Weizhi, *et al.* Review on engineering technology and equipment for soda saline-alkali land remediation in Northeast China [J]. Agriculture and Technology, 2018,38(23):1.
- [9] YIN A J, ZHANG M, GAO C, et al. Salinity evolution of coastal soils following reclamation and intensive usage, Eastern China[J]. Environmental Earth Sciences, 2016,75(18):1281.
- [10] JIN X B, HUANG J Y, ZHOU Y K. Impact of coastal wetland cultivation on microbial biomass, ammonia-oxidizing bacteria, gross N transformation and N₂O and NO potential

production[J]. Biology and Fertility of Soils, 2012,48(4):363.

- [11] ZHANG J H, BAI Z G, HUANG J, et al. Biochar alleviated the salt stress of induced saline paddy soil and improved the biochemical characteristics of rice seedlings differing in salt tolerance[J]. Soil and Tillage Research, 2019,195:104372.
- [12] HUANG L B, BAI J H, CHEN B, et al. Two-decade wetland cultivation and its effects on soil properties in salt marshes in the Yellow River Delta, China [J]. Ecological Informatics, 2012, 10:49.
- [13] 唐晓倩.木醋液和牛粪配施对盐碱土化学性质和微生物群落 结构的影响[D].北京:北京林业大学,2019.
 TANG Xiaoqian. Effect of pyroligneous acid co-applied with cow manure on chemical properties and microbial community structure in saline-alkali soil [D]. Beijing: Beijing Forestry University, 2019.
- [14] KUMARI A, JHA B. Engineering of a novel gene from a halophyte: Potential for agriculture in degraded coastal saline soil[J]. Land Degradation & Development, 2019, 30(6):595.
- [15] ZHAO Y, LI Y, WANG J, et al. Buried straw layer plus plastic mulching reduces soil salinity and increases sunflower yield in saline soils [J]. Soil and Tillage Research, 2016, 155:363.
- [16] 李慧琴,王胜利,郭美霞,等.不同秸秆隔层材料对河套灌区 土壤水盐运移及玉米产量的影响[J].灌溉排水学报,2012, 31(4):91.

LI Huiqing, WANG Shengli, GUO Meixia, *et al.* Effect of different straw interlayer on soil water-salt movement and maize yield in Hetao irrigation district in Inner Mongolia [J]. Journal of Irrigation and Drainage, 2012, 31(4):91.

[17] 王琳琳,李素艳,孙向阳,等.不同隔盐材料对滨海盐渍土水 盐动态和树木生长的影响[J].水土保持通报,2015,35 (4):141.

WANG Linlin, LI Suyan, SUN Xiangyang, *et al.* Effects of salt-isolation materials on soil water and salt movement and tree growth of saline soil in a coastal region[J]. Bulletin of Soil and Water Conservation, 2015, 35(4):141.

[18] WU L, SKAGGS T H, SHOUSE P J, et al. State space analysis of soil water and salinity regimes in a loam soil underlain by shallow groundwater [J]. Soil Science Society of America Journal, 2001,65(4):1065.

- [19] PFLETSCHINGER H, ENGELHARDT I, PIEPENBRINK M, et al. Soil column experiments to quantify vadose zone water fluxes in arid settings[J]. Environmental Earth Sciences, 2012,65(5):1523.
- [20] 马增辉, 马钢. 陕西卤泊滩"改排为蓄"条件下深层土壤盐分 空间格局研究[J]. 安徽农业科学, 2018,46(35):117.
 MA Zenghui, MA Gang. Spatial distribution study on soil salinity after changing drainage to impoundment in Lubotan of Shaanxi Province [J]. Anhui Agricultural Science, 2018, 46 (35):117.
- [21] 中华人民共和国国家质量监督检验检疫总局,中国国家标准 化管理委员会.耕地质量等级:GB/T 33469—2016[S].北 京:中国标准出版社,2016.

The General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. The National Standardization Administration of China. Quality grade of cultivated land:GB/T 33469—2016[S]. Beijing: China Standards Press, 2016.

- [22] 河北省质量技术监督局.盐碱地园林绿化施工规范:DB 13/ T1487—011[S].河北:河北省质量技术监督局, 2011.
 Hebei Provincial Bureau of Quality and Technical Supervision.
 Construction code for saline-alkali land landscaping: DB 13/ T1487—2011 [S]. Hebei: Hebei Provincial Bureau of Quality and Technical Supervision, 2011.
- [23] LI Q, GUO Z G. A Highly fluorinated SiO₂ particle assembled, durable superhydrophobic and superoleophobic coating for both hard and soft materials[J]. Nanoscale, 2019,11 (39):18338.
- [24] WANG D H, SUN Q Q, HOKKANEN M J, et al. Design of robust superhydrophobic surfaces [J]. Nature, 2020, 582 (7810):55.
- [25] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936,28(8):988.
- [26] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transaction of the Faraday Society, 1944,40:546.