DOI: 10. 11908/j. issn. 0253-374x. 23291

顾及频间钟偏差改正的精密单点定位模糊度固定

张兵良^{1,2},方 卓²,王立诗云³

(1. 南京农业大学公共管理学院,江苏南京210095;2. 南京数维测绘有限公司,江苏南京211808;3. 中铁四院集团南宁勘察设计院有限公司,广西南宁430007)

摘要:针对频间钟偏差(IFCB)影响三频非差非组合精密单 点定位模糊度固定(PPP-AR)性能的问题,提出了一种历元 差分(ED)的方法估计全球定位系统(GPS)、伽利略卫星导航 系统(Galileo)和北斗卫星导航系统(BDS)的IFCB;分析了 GPS、Galileo和BDS卫星面向相位的(PIFCB)时变特性,评 估了IFCB改正对GPS Block IIF卫星超宽巷(EWL)未校准 相位延迟(UPD)和GPS三频非差非组合PPP-AR性能的 影响。结果表明:GPS、Galileo和BDS卫星的PIFCB时变序 列峰值分别约为10 cm、3cm和5 cm。IFCB改正可以显著提 高GPS Block IIF卫星超宽巷UPD的稳定性和三频非差非组 合PPP-AR性能。

关键词:频间钟偏差;未校准相位延迟;精密单点定位;模糊 度固定

中图分类号: P228.4 文献标志码: A

Precise Point Positioning Ambiguity Resolution with Inter-Frequency Clock Bias Correction

ZHANG Bingliang^{1,2}, FANG Zhuo², WANG Lishiyun³

(1. College of Public Administration, Nanjing Agricultural University, Nanjing 210095, China; 2. Nanjing Shuwei Surveying and Mapping Co., Ltd., Nanjing 211808, China; 3. Nanning Survey and Design Institute Co., Ltd., of China Railway Siyuan Group, Nanning 430007, China)

Abstract: This paper addresses the issue that inter-frequency clock bias (IFCB) affects the performance of triple-frequency undifferenced and uncombined precise point positioning ambiguity resolution (PPP-AR). It proposes an epoch-differenced (ED) method to estimate IFCB for Global Positioning System (GPS), Galileo Navigation Satellite System (Galileo), and BeiDou Navigation Satellite System (BDS) satellites. It analyzes the time-varying characteristics of phase-specific IFCB (PIFCB) for these three satellite systems and

evaluated the impacts of IFCB correction on extra-wide lane (EWL) uncalibrated phase delay (UPD) estimation for GPS Block IIF satellites and the performance of triple-frequency undifferenced and uncombined PPP-AR. The results demonstrate that the peak values of time-varying PIFCB series for GPS, Galileo, and BDS satellites are approximately 10 cm, 3 cm, and 5 cm, respectively. IFCB correction significantly improves the stability of EWL UPD estimation for GPS Block IIF satellites and enhances the performance of triple-frequency undifferenced and uncombined PPP-AR.

Keywords: inter-frequency clock bias (IFCB); uncalibrated phase delay (UPD); precise point positioning; ambiguity resolution

随着多模多频全球卫星导航系统 (global navigation satellite system, GNSS)观测的迅速发展, 精密单点定位(precise point positioning, PPP)技术在 周跳检测、高阶电离层延迟校正、加速 PPP 收敛以及 提高模糊度固定(ambiguity resolution, AR)效率和可 靠性等方面具有显著的优势^[1-3]。然而,国际GNSS服 务(international GNSS service, IGS)分析中心通常使 用2个特定频率形成的无电离层(ionosphere-free,IF) 组合模型生成精密卫星钟差产品,不再适用于多频 PPP处理^[4]。这可归因于载波相位观测中的特定频率 的时变偏差。Montenbruck 等^[5]首次基于无几何和无 电离层(geometry-free and ionospheric-free,GFIF)组 合识别出GPS载波相位观测中的时变偏差,这些偏 差被定义为频间钟偏差(inter-frequency clock bias, IFCB)。因此, IFCB的准确建模和估计对于提高 GNSS定位和导航的精度具有重要意义。Li等^[6]首先 提出了全球定位系统(global positioning system,

E-mail:honeycuteboy@outlook.com

收稿日期: 2023-08-23

基金项目:国家自然科学基金面上项目(42271106)

第一作者:张兵良,高级工程师,工学硕士,主要研究方向为大地测量学。E-mail:zbl@njau.edu.cn

通信作者:方 卓,助理研究员,硕士生,主要研究方向为卫星导航定位与技术。

1

GPS) 伪随机噪声(pseudo random noise, PRN) PRN 25和PRN 01卫星IFCB的估计方法。随后,Li等^[7]针 对GPS Block IIF 卫星提出了快速估计和分析 IFCB 的方法。近年来,针对实时PPP中GPS卫星的IFCB 问题,提出了多种建模和预测方法。例如,Pan等^[8]的 研究改进了三频GPS卫星的IFCB估计方法,显著提 高了定位精度。针对三频 PPP 中 GPS 卫星的 IFCB 问题,提出了新的解决思路,研究了GPS Block IIF卫 星的IFCB特性及其对定位精度的影响,为误差来源 的识别提供了依据^[9]。此外,利用三频原始观测数据 估计GPS卫星的IFCB,为GNSS钟差模型的改进提 供了实验基础^[10-12]。针对北斗卫星导航系统(BeiDou navigation satellite system, BDS)地球静止轨道卫星 的IFCB建模和评估以及BDS与GPS精密定位中的 IFCB问题,相关研究丰富了IFCB领域的内容,并为 BDS应用提供了技术支持。一些研究还提出了GPS Block IIF 和BDS 卫星 IFCB 的经验修正模型,并利用 长期三频观测数据进行分析,为多模多频IFCB改正 提供了重要参考^[13-16]。针对GPS三频非差非组合数 据的应用策略、格洛纳斯卫星导航系统 (global navigation satellite system, GLONASS)卫星的IFCB 特征的系统性探究、多模多频IFCB与原始观测值信 号偏差(observable-specific signal bias, OSB)的联合 解算以及GLONASSL3信号相位中心偏移的差异性 分析不仅为提升多模GNSS定位精度提供了理论支 撑,同时亦拓展了GLONASS钟差研究体系的技术 路径^[17-20]。此外,部分学者基于IGS钟差产品提出的 卫星IFCB估计与补偿方法,通过引入BDS多频观测 数据的验证,有效优化了GNSS钟差建模精度。研究 进一步系统评估了 IFCB 随机建模策略对多频 PPP 的影响效应,为多频GNSS技术的应用推广奠定了方 法论基础^[21-23]。

随着多模多频 GNSS 观测技术的快速发展,探 讨多模多频 IFCB估计方法显得愈发重要。基于此, 本文提出了一种历元差分(epoch difference,ED)的 方法估计 GPS、Galileo和 BDS 卫星的 IFCB,使用了 全球 100 个多模 GNSS 实验跟踪网(multi-GNSS experiment, MGEX)测站观测数据估计了 GPS、 Galileo和 BDS 卫星的 IFCB,分析了 GPS、Galileo和 BDS 卫星面向相位的(phase IFCB,PIFCB)时变特 性,评估了 IFCB改正对 GPS Block IIF 卫星的超宽 巷(extra-wide-lane, EWL)未校准相位延迟 (uncalibrated phase delay, UPD)和非差非组合三频 PPP-AR性能的影响。

数学模型

1.1 精密单点定位数学模型

原始伪距和载波相位PPP观测方程可以表示为

$$\begin{cases} P_{s,r} = \rho_{s,r} + c\Delta t_r - c\Delta t_s + \gamma_i I_{s,r} + T_{s,r} + \\ d_{r,i} + d_{rv,i} - (d_{sc,i} + d_{sv,i}) + \varepsilon_{s,r} \\ L_{s,r} = \rho_{s,r} + c\Delta t_r - c\Delta t_s - \gamma_i I_{s,r} + T_{s,r} + \\ N_{sr,i} + b_{r,i} + b_{rv,i} - (b_{sc,i} + b_{sv,i}) + \xi_{s,r} \end{cases}$$
(1)

式中: $P_{s,r}$ 为伪距观测值; $\rho_{s,r}$ 为卫星s到接收机r的之间的几何距离;c为真空中的光速; Δt_r 和 Δt_s 分别为接收机和卫星钟差; $\gamma_i = f_1^2/f_i^2, f_i$ 为信号频率,i为第i信号频率; $I_{s,r}$ 为第1信号频率上的一阶倾斜电离层延迟; $T_{r,s}$ 为倾斜对流层延迟; $d_{r,i}$ 和 $d_{ro,i}$ 分别为接收机端伪距硬件延迟的时不变部分和时变部分; $d_{s,c}$ 和 $d_{so,i}$ 分别为卫星端伪距硬件延迟的时不变部分和时变部分; $d_{s,c}$ 和时变部分;i信号频段整周模糊度; $b_{r,i}$ 和 $b_{ro,i}$ 分别为接收机端相位硬件延迟的时不变部分和时变部分,由于接收机端相位延迟时变部分影响很小,通常被忽略^[11]; $b_{s,c}$ 和 $b_{so,i}$ 分别为卫星端相位硬件延迟的时不变部分和时变部分; $\epsilon_{s,r}$ 为载波相位观测值;

伪距和载波相位观测中的硬件延迟是不同的。 通常假设在伪距和载波相位观测方程中使用相同的 卫星钟差。精密钟差估计(precise clock estimation, PCE)过程中,卫星端伪距和相位硬件延迟的时变部 分将被卫星钟差参数吸收。因此,基于第1、2频率和 第1、3频率IF组合生成的精密卫星钟差可以表示为

$$\begin{cases} c \Delta t_{s, \text{IF}12} = c \Delta t_s - (\alpha_{\text{IF}12} d_{sv,1} + \beta_{\text{IF}12} d_{rv,2}) - \\ (\alpha_{\text{IF}12} b_{sv,1} + \beta_{\text{IF}12} b_{sv,2}) \\ c \Delta t_{s, \text{IF}13} = c \Delta t_s - (\alpha_{\text{IF}13} d_{rv,1} + \beta_{\text{IF}13} d_{rv,3}) - \\ (\alpha_{\text{IF}13} b_{sv,1} + \beta_{\text{IF}13} b_{sv,3}) \end{cases}$$
(2)

其中

$$\alpha_{\rm IF12} = \frac{f_1^2}{f_1^2 - f_2^2}$$

$$\beta_{\rm IF12} = -\frac{f_2^2}{f_1^2 - f_2^2}$$
(3)

1.2 非组合三频 IFCB 估计

基于第1、2和第1、3频率IF组合生成的卫星钟 差之间的差值可以表示为

$$\begin{aligned}
\vartheta_{s,IF} &= c \Delta t_{s,IF13} - c \Delta t_{s,IF12} = \eta_{s,IF} + \delta_{s,IF} & (4) \\
\eta_{s,IF} &= \left(\alpha_{IF12} d_{rc,1} + \beta_{IF12} d_{rc,2} \right) - \left(\alpha_{IF13} d_{rc,1} + \beta_{IF13} d_{rc,3} \right) = -\beta_{IF12} \left(d_{rc,1} - d_{rc,2} \right) + \\
\beta_{IF13} \left(d_{rc,2} - d_{rc,3} \right) &= -\beta_{IF12} \mu_{12} + \beta_{IF13} \mu_{13} & (5)
\end{aligned}$$

$$\delta_{s, \text{IF}} = (\alpha_{\text{IF}12}b_{sv, 1} + \beta_{\text{IF}12}b_{sv, 2}) - (\alpha_{\text{IF}13}b_{sv, 1} + \beta_{\text{IF}13}b_{sv, 3})$$
(6)

式中: $\partial_{s,F}$ 、 $\eta_{s,F}$ 和 $\delta_{s,F}$ 分别为总的IFCB、面向伪距的 IFCB(code IFCB,CIFCB)和PIFCB; μ_{12} 和 μ_{13} 分别 为第1、2和第1、3频率差分码偏差(differential code bias,DCB)。由式(6)可知,CIFCB可以直接通过 DCB线性变换获得,PIFCB则需要进一步研究。

GFIF 组合通常定义为2组不同频率IF 组合载 波相位观测之间的差值。GFIF 组合可以表示为

$$\zeta_{sr,123} = L_{sr,\text{IF}12} - L_{sr,\text{IF}13} = N_{sr,\text{GFIF}} + b_{rc,\text{GFIF}} + b_{rc,\text{GFIF}} + b_{sr,\text{GFIF}} + b_{sr,\text{GFIF}} + \xi_{sr,\text{GFIF}} + \xi_{sr,\text{GFIF}}$$
(7)

其中

$$\begin{cases} N_{sr, GFIF} = N_{sr, IF12} - N_{sr, IF13} \\ b_{rc, GFIF} = b_{rc, IF12} - b_{rc, IF13} \\ b_{rv, GFIF} = b_{rv, IF12} - b_{rv, IF13} \\ b_{sc, GFIF} = b_{sc, IF12} - b_{sc, IF13} \\ b_{sv, GFIF} = b_{sv, IF12} - b_{sv, IF13} \\ \xi_{sr, GFIF} = \xi_{sr, IF12} - \xi_{sr, IF13} \end{cases}$$
(8)

由式(7)—(9)可知,PIFCB可以重新表示为

$$\delta_{\text{IF, 13}} = \zeta_{sr, 123} - (N_{sr, \text{GFIF}} + b_{rc, \text{GFIF}} + b_{rv, \text{GFIF}} + b_{sr, \text{GFIF}})$$
(9)

如果历元间不存在周跳,由于接收机端相位硬件 延迟的时变部分足够小,GFIF组合和PIFCB之间的 差值可以认为是时不变^[4,6]。ED PIFCB可以表示为

 $\Delta \delta_{\rm IF, 13}(t, t+1) = \delta_{\rm IF, 13}(t+1) - \delta_{\rm IF, 13}(t) \quad (10)$

式中: $\Delta \delta_{\text{F,13}}(t,t+1)$ 为历元t到历元t+1时刻的 ED PIFCB变化量。假设存在n个测站,卫星s在历 元t和t+1时刻的ED PIFCB平均值可以表示为

$$\delta_{\rm IF, 13mean}(t, t+1) = \sum_{i=1}^{n} \Delta \delta_{\rm IF, 13}(t, t+1)/n \quad (11)$$

任意历元的ED PIFCB 通过累积法可以表示为

$$\delta_{\rm IF,13}(t) = \delta_{\rm IF,13}(t_0) + \sum_{j=0}^{t-1} \Delta \delta_{\rm IF,13}(j,j+1) \quad (12)$$

式中: $\delta_{\text{F,13}}(t)$ 和 $\delta_{\text{F,13}}(t_0)$ 分别为历元t和 t_0 的非差 PIFCB; t_0 为参考历元,通常设为某一天的初始历 元。通过非零均值正态分布约束确定一天的 $\delta_{\text{F,13}}(t_0)$ 。假设存在k个历元, $\delta_{\text{F,13}}(t_0)$ 可以表示为

$$\sum_{j=0}^{k-1} \Delta \delta_{\text{IF},13}(j) = 0$$

$$\delta_{\text{IF},13}(t_0) = \left[-\sum_{j=1}^{k-1} (k-j) \Delta \delta_{\text{IF},13}(j-1,j) \right] / k$$
(13)

2 数据处理

2.1 数据来源

选取 2023 年年积日(day of year, DOY)130— 136连续7d全球均匀分布的100个MGEX测站观测 数据估计GPS、Galileo和BDS卫星的IFCB;进一步 选取了全球均匀分布的14个MGEX测站观测数据 进行GPS三频非差非组合PPP-AR性能评估,测站 分布如图1所示。

图 1 MGEX 测站分布 Fig. 1 Distribution of MGEX station

2.2 GPS、Galileo和BDS卫星的IFCB估计

根据GPS、Galileo和BDS卫星的IFCB估计原 理,使用了大地测量和地球物理研究所(Institute of Geodesy And Geophysics, IGG)的DCB产品,GPS、 Galileo和BDS信号频段如表1所示。图2显示了 GPS Block IIF和Block III卫星(G04、G11、G14、 G18、G23和G28)的PIFCB时变序列。分析图2可 知,GPS Block IIF卫星的PIFCB时变序列峰值约为 10 cm,GPS Block III卫星的PIFCB时变序列峰值 小于4 cm,这表明PIFCB误差对GPS Block III卫星 L5载波相位观测影响很小。图3显示了Galileo卫 星 PIFCB 时变序列,分析图3可知,Galileo 卫星的 PIFCB 时变序列均呈现出小于3 cm 的变化幅度。

表 1 GPS、Galileo 和 BDS 卫星的 IFCB 估计使用的信号 频段

Tab. 1Singal frequency bands used for IFCB estimation of GPS, Galileo, and BDS Satellites

系统	信号频段
GPS	L1,L2,L5
Galileo	E1、E5a、E5b
BDS-2	B1I,B2I,B3I
BDS-3	B1C、B2a、B3I

Fig. 2 PIFCB time-varying series for GPS Satellites

GPS和Galileo卫星的IFCB均方根(root mean square, RMS)值统计结果分别如图4和图5所示。

分析图4和图5可知,GPS Block III和Galileo卫星的频间钟偏差RMS值均小于1.5 cm,这表明PIFCB

图 3 Galileo 卫星的 PIFCB 时变序列 Fig. 3 PIFCB time-varying series for Galileo Satellites

误差对 GPS Block III 和 Galileo 卫星的影响均可以 忽略不计。

Fig. 4 IFCBs RMS statistics results for GPS Satellites

图 5 Galileo 卫星的频间钟偏差 RMS 统计结果 Fig. 5 IFCBs RMS statistics results for Galileo Satellites

图 6 和图 7 分别显示了 2023 年 DOY 130— DOY 136 BDS-2 和 BDS-3 卫星的 PIFCB 时变序列, 图8和图9分别显示了BDS-2和BDS-3卫星的频间 钟偏差RMS值统计结果。分析图6—8可知,BDS 卫星的PIFCB时变序列变化幅度约为3~5 cm,频 间钟偏差RMS值不超过3 cm。BDS-3的PRN C34 和PRN C40卫星相比其他BDS卫星的频间钟偏差 RMS值较大,这可归因于追踪BDS-3PRN C34 和 PRN C40卫星的MGEX测站较少有关。由于观测 数据较少,估计的PIFCB产生较大的未建模残差噪 声。随着新的BDS-3卫星观测数量的增加,PRN C34 和 PRN C40卫星的IFCB估计结果将与其他 BDS-3卫星相当。

为了进一步验证 IFCB 对三频 PPP-AR 数据处 理的影响。鉴于2.2节的 GPS、Galileo 和 BDS 卫星 的 PIFCB 时变特性验证了 IFCB 对 GPS Block III、 Galileo 和 BDS 卫星的影响相对较小,因此,后续实 验主要研究 IFCB 对 GPS Block IIF 卫星的超宽巷 UPD 估计结果和非差非组合三频 PPP-AR 性能的 影响。

2.3 GPS Block IIF 卫星的超宽巷 UPD 估计结果

选择 G01 作为参考卫星,图 10 显示了 2023 年 DOY 130—DOY 136经 IFCB改正前后按照逐历元 估计 GPS Block IIF 卫星的超宽巷 UPD 估计结果。 分析图 10可知,未经 IFCB改正估计的超宽巷 UPD 时间序列的峰间振幅约为0.2~0.4周,具有长期波 动的特性。经 IFCB改正后估计的超宽巷 UPD 时间 序列具有全天保持稳定的特性。图 11 显示了经

图 6 BDS-2 卫星的 PIFCB 时变序列 Fig. 6 IFCB estimation for BDS-2 Satellites

图 7 BDS-3 卫星的 PIFCB 时变序列 Fig. 7 IFCB estimation for BDS-3 Satellites

图8 BDS-2卫星的频间钟偏差 RMS 统计结果

Fig. 8 IFCBs RMS statistics results for BDS-2 Satellites

IFCB改正前后按照逐天估计超宽巷 UPDs 的标准 差(standard deviation, STD)统计结果。经 IFCB 改

正估计的超宽巷未校准相位延迟STD明显小于未经IFCB改正估计的超宽巷未校准相位延迟UPDs。 平均超宽巷未校准相位延迟STD从0.06周提高到 0.02周,提高了66.7%。这表明,IFCB改正可以显 著提高GPS Block IIF 卫星的超宽巷UPD稳定性。

2.4 GPS 三频非差非组合 PPP-AR 性能评估

为了进一步验证 IFCB 对 GPS 三频非差非组 合 PPP-AR 性能的影响。非差非组合 PPP-AR 处 理策略具体如表2所示。使用扩展卡尔曼滤波对 状态量进行估计,接收机坐标视作白噪声估计;相 位缠绕使用经验模型改正;卫星端和接收机端的相 位中心偏差(phase center offset, PCO)和相位中心 变化(phase center variation, PCV)使用 IGS 提供的 igs20. atx 文件进行改正;部分模糊度固定使用数据 驱动高度角优先固定方法,将模糊度子集按照卫星 高度角排序,循环剔除高度角最小卫星直至固定, Ratio 检验和最小二乘模糊度降相关平差(least ambiguity decorrelation adjustment, square LAMBDA)成功率作为判断模糊度固定是否成功 的标准。14个 MGEX 测站的平均收敛时间和定位 误差RMS统计结果分别如表3和图12所示。收敛 时间定义为连续10个历元均小于5 cm 的水平定位 误差所需的时间。分析表2可知,经IFCB改正的

图 10 GPS Block IIF 卫星经 IFCB 改正前后 EWL UPD 估计结果 Fig. 10 Estimation of EWL UPDs before and after IFCB correction for GPS Block IIF Satellites

图 11 GPS Block IIF 卫星经 IFCB 改正前后 EWL UPDs STD 统计结果

三频非差非组合 PPP-AR 解方案相比未经 IFCB 改 正在东(east,E)、北(north,N)和天(up,U)三方向 平均定位误差 RMS 分别从2.64 cm减少到1.82 cm, 平均定位精度提高了 31.1%;从2.25 cm减少到 1.51 cm,平均定位精度提高了 32.9%;从3.02 cm 减少到2.06 cm,平均定位精度提高了 31.8%。收 敛时间小于 20min 比例从 68.6% 提升到 71.3%,提 高了 2.7%。平均收敛时间从 22.1 min 减少到 18.1 min,减少了 18.1%,略优于非差非组合双频 PPP-AR 解方案(18.4min)。

表2 非差非组合PPP-AR处理策略

cessing strategy		
项目	策略	
信号频段	L1,L2,L5	
采样间隔	30 s	
卫星端和接收机端PCO和PCV	igs20. atx	
电离层延迟	随机游走	
接收机钟差	白噪声估计	
相位模糊度	常数估计	
截止高度角	7°	
定权方式	高度角定权	
相位缠绕	经验模型改正	
模糊度固定算法	LAMBDA算法	
模糊度固定检核	LAMBDA成功率超过95%, 比率检验值大于3.0	

表 3 GPS 双频 PPP-AR 和经 IFCB 改正前后 GPS 三频 PPP-AR 平均定位误差 RMS 值

Tab. 3 Average positioning error RMS of GPS UC dual-frequency PPP-AR and UC triple-frequency PPP-AR solutions before and after IFCB correction

位置	双频 PPP- AR	未经IFCB改正的IF 三频PPP-AR	经IFCB改正的 三频PPP—AR
Е	1.85	2.64	1.82
Ν	1.52	2.25	1.51
U	2.08	3.02	2.06

图 12 GPS 双频 PPP-AR 和经 IFCB 改正前后 GPS 三频 PPP-AR 收敛时间分布 Fig. 12 Distribution of convergence time of GPS UC dual-frequency PPP-AR and UC triple-frequency PPP-AR solutions before and after IFCB correction

3 结语

提出了一种 ED 的方法估计 GPS、Galileo 和 BDS 卫星的 IFCB, 使用了 2023 年 DOY 130-DOY 136全球均匀分布的100个MGEX测站观测数 据估计了GPS、Galileo和BDS卫星的IFCB,分析了 GPS、Galileo和BDS卫星的PIFCB时变特性,评估 了 IFCB 改正对 GPS Block IIF 卫星的超宽巷 UPD 和 GPS 三频非差非组合 PPP-AR 性能的影响。 GPS、Galileo和BDS卫星的IFCB时变序列特性表 明:基于GPS Block IIF 卫星估计的 PIFCB 时变序列 峰值约为10 cm;基于GPS Block III 和 Galileo 卫星 估计的 PIFCB 时变序列均呈现出小于4 cm 峰间振 幅变化。BDS 卫星的PIFCB时变序列幅度约为3~ 5 cm,频间钟偏差 RMS 值不超过 3 cm。GPS Block IIF 卫星的超宽巷 UPD 和三频非差非组合 PPP-AR 性能评估结果表明:经IFCB改正的GPS Block IIF 卫星的超宽巷未校准相位延迟UPDs从0.06周提高 到0.04周,提高了66.7%,这表明,IFCB改正可以 显著提高GPS Block IIF 卫星的超宽巷 UPD 稳定 性。经IFCB改正的三频非差非组合 PPP-AR 解方 案相比未经IFCB改正PPP-AR解方案在E、N和U 三方向平均定位精度分别提高了31.1%、32.9%、 31.8%;收敛时间小于20min比例提高了2.7%;平 均收敛时间减少了18.1%,略优于非差非组合双频 PPP-AR解方案。GPS 三频非差非组合 PPP-AR 的 性能评估的实验验证了 IFCB 的改正效果,对卫星钟 差估计与精密定位均具有一定的参考意义。

作者贡献声明:

张兵良:提出研究思路,指导研究方案,设计论文框架,

审阅论文并提出修改意见。

方 卓:整理文献,参与研究工作,完成程序编写,撰写 论文。

王立诗云:整理文献,参与研究工作。

参考文献:

- [1] ZHOU H, WANG L, FU W, et al. Real-time GNSS triplefrequency cycle slip detection using three optimal linear combinations[J]. GPS Solutions, 2023, 27(3): 142.
- [2] 张兵良,方卓,王立诗云,等.高阶电离层延迟对PPP-AR对流 层参数估计的影响[J].测绘科学,2024,49(4):57.
 ZHANG Bingliang, FANG Zhuo, WANG Lishiyun, *et al.* The effects of higher-order ionospheric delay on precise point positioning ambiguity resolution tropospheric parameters estimation [J]. Science of Surveying and Mapping, 2024, 49(4):57.
- [3] YANG Y, ZHOU F, SONG S. Improving precise point positioning (PPP) performance with best integer equivariant (BIE) estimator[J]. GPS Solutions, 2024, 28(1): 50.
- [4] MONTENBRUCK O, HAUSCHILD A, STEIGENBERGER P, et al. Three's the challenge: a close look at GPS SVN62 triple-frequency signal combinations finds carrier-phase variations on the new L5[J]. GPS World, 2010, 21(8); 8.
- [5] MONTENBRUCK O, HUGENTOBLER U, DACH R, et al. Apparent clock variations of the Block IIF-1 (SVN62) GPS satellite[J]. GPS solutions, 2012, 16: 303.
- [6] LI H J, ZHOU X H, WU B, et al. Estimation of the interfrequency clock bias for the satellites of PRN25 and PRN01[J]. Science China Physics, Mechanics and Astronomy, 2012, 55: 2186.
- [7] LI H, ZHOU X, WU B. Fast estimation and analysis of the inter-frequency clock bias for Block IIF satellites [J]. GPS solutions, 2013, 17: 347.
- [8] PAN L, ZHANG X, LI X, et al. GPS inter-frequency clock

bias modeling and prediction for real-time precise point positioning[J]. GPS Solutions, 2018, 22: 1.

- [9] LI H, LI B, XIAO G, et al. Improved method for estimating the inter-frequency satellite clock bias of triple-frequency GPS [J]. GPS Solutions, 2016, 20: 751.
- [10] GUO J, GENG J. GPS satellite clock determination in case of inter-frequency clock biases for triple-frequency precise point positioning[J]. Journal of Geodesy, 2018, 92(10): 1133.
- [11] PAN L, ZHANG X, LI X, et al. Characteristics of interfrequency clock bias for Block IIF satellites and its effect on triple-frequency GPS precise point positioning [J]. GPS solutions, 2017, 21: 811.
- [12] FAN L, SHI C, LI M, et al. GPS satellite inter-frequency clock bias estimation using triple-frequency raw observations [J]. Journal of Geodesy, 2019, 93: 2465.
- [13] LI H, CHEN Y, WU B, et al. Modeling and initial assessment of the inter-frequency clock bias for COMPASS GEO satellites [J]. Advances in Space Research, 2013, 51 (12): 2277.
- PAN L, LI X, ZHANG X, *et al.* Considering inter-frequency clock bias for BDS triple-frequency precise point positioning[J]. Remote Sensing, 2017, 9(7): 734.
- [15] GONG X, GU S, LOU Y, et al. Research on empirical correction models of GPS Block IIF and BDS satellite interfrequency clock bias[J]. Journal of Geodesy, 2020, 94: 1.
- [16] ZHANG F, CHAI H, Li L, *et al.* Estimation and analysis of GPS inter-frequency clock biases from long-term triplefrequency observations[J]. GPS Solutions, 2021, 25: 1.
- [17] AI Q, LIUT, ZHANG B, et al. Simultaneous estimation of

inter-frequency clock biases and clock offsets with triplefrequency GPS data: undifferenced and uncombined methodology and impact analysis[J]. GPS Solutions, 2023, 27 (3): 145.

- [18] ZHANG F, CHAI H, LI L, et al. Understanding the characteristic of GLONASS inter-frequency clock bias using both FDMA and CDMA signals[J]. GPS Solutions, 2022, 26 (2): 63.
- [19] LI L, YANG Z, JIA Z, *et al.* Parallel computation of Multi-GNSS and multi-frequency inter-frequency clock biases and observable-specific biases [J]. Remote Sensing, 2023, 15(7): 1953.
- [20] WU J, LI X, YUAN Y, et al. Estimation of GLONASS interfrequency clock bias considering the phase center offset differences on the L3 signal [J]. GPS Solutions, 2023, 27 (3): 130.
- [21] ZHANG F, CHAI H, WANG M, et al. Considering interfrequency clock bias for GLONASS FDMA+ CDMA precise point positioning[J]. GPS Solutions, 2023, 27(1): 10.
- [22] FAN L, WANG C, GUO S, et al. GNSS satellite interfrequency clock bias estimation and correction based on IGS clock datum: A unified model and result validation using BDS-2 and BDS-3 multi-frequency data [J]. Journal of Geodesy, 2021, 95: 1.
- [23] LU Y, ZHU H, TANG L, et al. Influence of stochastic modeling for inter-frequency clock biases on multi-frequency precise point positioning [J]. Remote Sensing, 2023, 15(18): 4507.